Here's a list of 50+ Python libraries for data science๐
1. NumPy - "Handles arrays and math operations efficiently."
2. pandas - "Data manipulation made easy with data frames."
3. Matplotlib - "Plots and charts for data visualization."
4. Seaborn - "Creates attractive statistical plots."
5. SciPy - "Scientific and technical computing toolkit."
6. scikit-learn - "Machine learning at your fingertips."
7. TensorFlow - "For deep learning and neural networks."
8. Keras - "High-level deep learning API."
9. PyTorch - "Deep learning framework for researchers."
10. Statsmodels - "Statistical models and tests."
11. NLTK - "Natural language processing toolkit."
12. Gensim - "Topic modeling and document similarity."
13. XGBoost - "Gradient boosting for better predictions."
14. LightGBM - "Efficient gradient boosting framework."
15. CatBoost - "Optimized gradient boosting for categories."
16. NetworkX - "Build and analyze networks and graphs."
17. Beautiful Soup - "HTML and XML parsing made simple."
18. Requests - "Effortless HTTP requests."
19. SQLAlchemy - "Relational database interactions."
20. Pandas Profiling - "Generate data reports quickly."
21. Featuretools - "Automated feature engineering."
22. H2O - "Open-source machine learning platform."
23. Yellowbrick - "Visualize machine learning results."
24. Plotly - "Interactive and shareable plots."
25. Dash - "Build web apps for data visualization."
26. Flask - "Lightweight web app framework."
27. Streamlit - "Create apps with minimal code."
28. Bokeh - "Interactive web-based visualization."
29. GeoPandas - "Geospatial data analysis made easy."
30. Altair - "Declarative statistical visualization."
31. Prophet - "Time series forecasting with ease."
32. Feature-engine - "Feature engineering for ML."
33. Dask - "Parallel computing for big data."
34. Vaex - "Efficient dataframes for big data."
35. Optuna - "Automated hyperparameter tuning."
36. imbalanced-learn - "Handling imbalanced datasets."
37. Eli5 - "Interpret machine learning models."
38. SHAP - "Explainability for ML models."
39. scikit-image - "Image processing in Python."
40. TextBlob - "Text processing and sentiment analysis."
41. Polars - "Fast DataFrame library."
42. Cufflinks - "Combines Plotly with pandas."
43. TA-Lib - "Technical analysis for financial data."
44. OpenCV - "Computer vision and image processing."
45. Pymc3 - "Probabilistic programming for Bayesian analysis."
46. Scrapy - "Web scraping toolkit."
47. PySpark - "Apache Spark for big data processing."
48. PyArrow - "Columnar data format for analytics."
49. OptimalFlow - "AutoML for data scientists."
50. Pycaret - "Automated machine learning toolkit."
These libraries cover a wide range of data science tasks, from data manipulation and visualisation to machine learning and deep learning, making them essential tools for any data scientist or Python programmer.
1. NumPy - "Handles arrays and math operations efficiently."
2. pandas - "Data manipulation made easy with data frames."
3. Matplotlib - "Plots and charts for data visualization."
4. Seaborn - "Creates attractive statistical plots."
5. SciPy - "Scientific and technical computing toolkit."
6. scikit-learn - "Machine learning at your fingertips."
7. TensorFlow - "For deep learning and neural networks."
8. Keras - "High-level deep learning API."
9. PyTorch - "Deep learning framework for researchers."
10. Statsmodels - "Statistical models and tests."
11. NLTK - "Natural language processing toolkit."
12. Gensim - "Topic modeling and document similarity."
13. XGBoost - "Gradient boosting for better predictions."
14. LightGBM - "Efficient gradient boosting framework."
15. CatBoost - "Optimized gradient boosting for categories."
16. NetworkX - "Build and analyze networks and graphs."
17. Beautiful Soup - "HTML and XML parsing made simple."
18. Requests - "Effortless HTTP requests."
19. SQLAlchemy - "Relational database interactions."
20. Pandas Profiling - "Generate data reports quickly."
21. Featuretools - "Automated feature engineering."
22. H2O - "Open-source machine learning platform."
23. Yellowbrick - "Visualize machine learning results."
24. Plotly - "Interactive and shareable plots."
25. Dash - "Build web apps for data visualization."
26. Flask - "Lightweight web app framework."
27. Streamlit - "Create apps with minimal code."
28. Bokeh - "Interactive web-based visualization."
29. GeoPandas - "Geospatial data analysis made easy."
30. Altair - "Declarative statistical visualization."
31. Prophet - "Time series forecasting with ease."
32. Feature-engine - "Feature engineering for ML."
33. Dask - "Parallel computing for big data."
34. Vaex - "Efficient dataframes for big data."
35. Optuna - "Automated hyperparameter tuning."
36. imbalanced-learn - "Handling imbalanced datasets."
37. Eli5 - "Interpret machine learning models."
38. SHAP - "Explainability for ML models."
39. scikit-image - "Image processing in Python."
40. TextBlob - "Text processing and sentiment analysis."
41. Polars - "Fast DataFrame library."
42. Cufflinks - "Combines Plotly with pandas."
43. TA-Lib - "Technical analysis for financial data."
44. OpenCV - "Computer vision and image processing."
45. Pymc3 - "Probabilistic programming for Bayesian analysis."
46. Scrapy - "Web scraping toolkit."
47. PySpark - "Apache Spark for big data processing."
48. PyArrow - "Columnar data format for analytics."
49. OptimalFlow - "AutoML for data scientists."
50. Pycaret - "Automated machine learning toolkit."
These libraries cover a wide range of data science tasks, from data manipulation and visualisation to machine learning and deep learning, making them essential tools for any data scientist or Python programmer.
๐22โค4
30540964.pdf
5.3 MB
Useful Python
ะะฒัะพั: Stuart Langridge
ะะฒัะพั: Stuart Langridge
30303228.pdf
642.4 KB
Python Clean Code
ะะฒัะพั: Nash Maverick
ะะฒัะพั: Nash Maverick
https_coderbooks_ruPython_How_To_63_techniques_to_improve_your_Python.pdf
12.7 MB
Python How-To
ะะฒัะพั: Yong Cui
ะะฒัะพั: Yong Cui
https___coderbooks.ruPython for Cybersecurity.pdf
8.9 MB
Python for Cybersecurity
ะะฒัะพั: Howard E. Poston III
ะะฒัะพั: Howard E. Poston III
Django_3_Web_Development_Cookbook.pdf
43.2 MB
Django 3 Web Development Cookbook
ะะฒัะพั: Aidas Bendoraitis
ะะฒัะพั: Aidas Bendoraitis
๐10โค1๐ฅฐ1
Create Graphical User Interfaces with Python.pdf
11.3 MB
GUI Programming with Python ๐ป๐
๐5โค1
๐ฐ Complete Web & Mobile Designer in 2023: UI/UX, Figma, +more
๐ Updated 2023
๐ 4.5 - 24445 votes ๐ฐ Original Price: $74.99
Become a Designer in 2023! Master Mobile and Web Design, User Interface + User Experience (UI/UX Design), HTML, and CSS
Taught By: Andrei Neagoie, Daniel Schifano
Download Full Course: https://t.iss.one/webdevcoursefree/478
Download All Courses: https://t.iss.one/pythondevelopersindia
๐ Updated 2023
๐ 4.5 - 24445 votes ๐ฐ Original Price: $74.99
Become a Designer in 2023! Master Mobile and Web Design, User Interface + User Experience (UI/UX Design), HTML, and CSS
Taught By: Andrei Neagoie, Daniel Schifano
Download Full Course: https://t.iss.one/webdevcoursefree/478
Download All Courses: https://t.iss.one/pythondevelopersindia
๐6
Which of the following is a list in python?
Anonymous Quiz
15%
(1,2,3,4,5)
78%
[1,2,3,4]
5%
{1,2}
2%
{1:2}
๐7โค3