Guys, We Did It!
We just crossed 1 Lakh followers on WhatsApp — and I’m dropping something massive for you all!
I’m launching a Data Science Learning Series — where I will cover essential Data Science & Machine Learning concepts from basic to advanced level covering real-world projects with step-by-step explanations, hands-on examples, and quizzes to test your skills after every major topic.
Here’s what we’ll cover in the coming days:
Week 1: Data Science Foundations
- What is Data Science?
- Where is DS used in real life?
- Data Analyst vs Data Scientist vs ML Engineer
- Tools used in DS (with icons & examples)
- DS Life Cycle (Step-by-step)
- Mini Quiz: Week 1 Topics
Week 2: Python for Data Science (Basics Only)
- Variables, Data Types, Lists, Dicts (with real-world data)
- Loops & Conditional Statements
- Functions (only basics)
- Importing CSV, Viewing Data
- Intro to Pandas DataFrame
- Mini Quiz: Python Topics
Week 3: Data Cleaning & Preparation
- Handling Missing Data
- Duplicates, Outliers (conceptual + pandas code)
- Data Type Conversions
- Renaming Columns, Reindexing
- Combining Datasets
- Mini Quiz: Choose the right method (dropna vs fillna, etc.)
Week 4: Data Exploration & Visualization
- Descriptive Stats (mean, median, std)
- GroupBy, Value_counts
- Visualizing with Pandas (plot, bar, hist)
- Matplotlib & Seaborn (basic use only)
- Correlation & Heatmaps
- Mini Quiz: Match chart type with goal
Week 5: Feature Engineering + Intro to ML
What is Feature Engineering?
Encoding (Label, One-Hot), Scaling
Train-Test Split, ML Pipeline
Supervised vs Unsupervised
Linear Regression: Concept Only
Mini Quiz: Regression or Classification?
Week 6: Model Building & Evaluation
- Train a Linear Regression Model
- Logistic Regression (basic example)
- Model Evaluation (Accuracy, Precision, Recall)
- Confusion Matrix (explanation)
- Overfitting & Underfitting (concepts)
- Mini Quiz: Model Evaluation Scenarios
Week 7: Real-World Projects
- Project 1: Predict House Prices
- Project 2: Classify Emails as Spam
- Project 3: Explore Titanic Dataset
- How to structure your project
- What to upload on GitHub
- Mini Quiz: What’s missing in this project?
Week 8: Career Boost Week
- Resume Tips for DS Roles
- Portfolio Tips (GitHub/Notion/PDF)
- Best Platforms to Apply (Internship + Job)
- 15 Most Common DS Interview Qs
- Mock Interview Questions for Practice
- Final Recap Quiz
React with ❤️ if you're ready for this new journey
Join our WhatsApp channel now: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/998
We just crossed 1 Lakh followers on WhatsApp — and I’m dropping something massive for you all!
I’m launching a Data Science Learning Series — where I will cover essential Data Science & Machine Learning concepts from basic to advanced level covering real-world projects with step-by-step explanations, hands-on examples, and quizzes to test your skills after every major topic.
Here’s what we’ll cover in the coming days:
Week 1: Data Science Foundations
- What is Data Science?
- Where is DS used in real life?
- Data Analyst vs Data Scientist vs ML Engineer
- Tools used in DS (with icons & examples)
- DS Life Cycle (Step-by-step)
- Mini Quiz: Week 1 Topics
Week 2: Python for Data Science (Basics Only)
- Variables, Data Types, Lists, Dicts (with real-world data)
- Loops & Conditional Statements
- Functions (only basics)
- Importing CSV, Viewing Data
- Intro to Pandas DataFrame
- Mini Quiz: Python Topics
Week 3: Data Cleaning & Preparation
- Handling Missing Data
- Duplicates, Outliers (conceptual + pandas code)
- Data Type Conversions
- Renaming Columns, Reindexing
- Combining Datasets
- Mini Quiz: Choose the right method (dropna vs fillna, etc.)
Week 4: Data Exploration & Visualization
- Descriptive Stats (mean, median, std)
- GroupBy, Value_counts
- Visualizing with Pandas (plot, bar, hist)
- Matplotlib & Seaborn (basic use only)
- Correlation & Heatmaps
- Mini Quiz: Match chart type with goal
Week 5: Feature Engineering + Intro to ML
What is Feature Engineering?
Encoding (Label, One-Hot), Scaling
Train-Test Split, ML Pipeline
Supervised vs Unsupervised
Linear Regression: Concept Only
Mini Quiz: Regression or Classification?
Week 6: Model Building & Evaluation
- Train a Linear Regression Model
- Logistic Regression (basic example)
- Model Evaluation (Accuracy, Precision, Recall)
- Confusion Matrix (explanation)
- Overfitting & Underfitting (concepts)
- Mini Quiz: Model Evaluation Scenarios
Week 7: Real-World Projects
- Project 1: Predict House Prices
- Project 2: Classify Emails as Spam
- Project 3: Explore Titanic Dataset
- How to structure your project
- What to upload on GitHub
- Mini Quiz: What’s missing in this project?
Week 8: Career Boost Week
- Resume Tips for DS Roles
- Portfolio Tips (GitHub/Notion/PDF)
- Best Platforms to Apply (Internship + Job)
- 15 Most Common DS Interview Qs
- Mock Interview Questions for Practice
- Final Recap Quiz
React with ❤️ if you're ready for this new journey
Join our WhatsApp channel now: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/998
❤9👏1
Call for papers on AI to AI Journey* conference journal has started!
Prize for the best scientific paper - 1 million roubles!
Selected papers will be published in the scientific journal Doklady Mathematics.
📖 The journal:
• Indexed in the largest bibliographic databases of scientific citations
• Accessible to an international audience and published in the world’s digital libraries
Submit your article by August 20 and get the opportunity not only to publish your research the scientific journal, but also to present it at the AI Journey conference.
Prize for the best article - 1 million roubles!
More detailed information can be found in the Selection Rules -> AI Journey
*AI Journey - a major online conference in the field of AI technologies
Prize for the best scientific paper - 1 million roubles!
Selected papers will be published in the scientific journal Doklady Mathematics.
📖 The journal:
• Indexed in the largest bibliographic databases of scientific citations
• Accessible to an international audience and published in the world’s digital libraries
Submit your article by August 20 and get the opportunity not only to publish your research the scientific journal, but also to present it at the AI Journey conference.
Prize for the best article - 1 million roubles!
More detailed information can be found in the Selection Rules -> AI Journey
*AI Journey - a major online conference in the field of AI technologies
❤5
Most Important Mathematical Equations in Data Science!
1️⃣ Gradient Descent: Optimization algorithm minimizing the cost function.
2️⃣ Normal Distribution: Distribution characterized by mean μ\muμ and variance σ2\sigma^2σ2.
3️⃣ Sigmoid Function: Activation function mapping real values to 0-1 range.
4️⃣ Linear Regression: Predictive model of linear input-output relationships.
5️⃣ Cosine Similarity: Metric for vector similarity based on angle cosine.
6️⃣ Naive Bayes: Classifier using Bayes’ Theorem and feature independence.
7️⃣ K-Means: Clustering minimizing distances to cluster centroids.
8️⃣ Log Loss: Performance measure for probability output models.
9️⃣ Mean Squared Error (MSE): Average of squared prediction errors.
🔟 MSE (Bias-Variance Decomposition): Explains MSE through bias and variance.
1️⃣1️⃣ MSE + L2 Regularization: Adds penalty to prevent overfitting.
1️⃣2️⃣ Entropy: Uncertainty measure used in decision trees.
1️⃣3️⃣ Softmax: Converts logits to probabilities for classification.
1️⃣4️⃣ Ordinary Least Squares (OLS): Estimates regression parameters by minimizing residuals.
1️⃣5️⃣ Correlation: Measures linear relationships between variables.
1️⃣6️⃣ Z-score: Standardizes value based on standard deviations from mean.
1️⃣7️⃣ Maximum Likelihood Estimation (MLE): Estimates parameters maximizing data likelihood.
1️⃣8️⃣ Eigenvectors and Eigenvalues: Characterize linear transformations in matrices.
1️⃣9️⃣ R-squared (R²): Proportion of variance explained by regression.
2️⃣0️⃣ F1 Score: Harmonic mean of precision and recall.
2️⃣1️⃣ Expected Value: Weighted average of all possible values.
Like if you need similar content 😄👍
1️⃣ Gradient Descent: Optimization algorithm minimizing the cost function.
2️⃣ Normal Distribution: Distribution characterized by mean μ\muμ and variance σ2\sigma^2σ2.
3️⃣ Sigmoid Function: Activation function mapping real values to 0-1 range.
4️⃣ Linear Regression: Predictive model of linear input-output relationships.
5️⃣ Cosine Similarity: Metric for vector similarity based on angle cosine.
6️⃣ Naive Bayes: Classifier using Bayes’ Theorem and feature independence.
7️⃣ K-Means: Clustering minimizing distances to cluster centroids.
8️⃣ Log Loss: Performance measure for probability output models.
9️⃣ Mean Squared Error (MSE): Average of squared prediction errors.
🔟 MSE (Bias-Variance Decomposition): Explains MSE through bias and variance.
1️⃣1️⃣ MSE + L2 Regularization: Adds penalty to prevent overfitting.
1️⃣2️⃣ Entropy: Uncertainty measure used in decision trees.
1️⃣3️⃣ Softmax: Converts logits to probabilities for classification.
1️⃣4️⃣ Ordinary Least Squares (OLS): Estimates regression parameters by minimizing residuals.
1️⃣5️⃣ Correlation: Measures linear relationships between variables.
1️⃣6️⃣ Z-score: Standardizes value based on standard deviations from mean.
1️⃣7️⃣ Maximum Likelihood Estimation (MLE): Estimates parameters maximizing data likelihood.
1️⃣8️⃣ Eigenvectors and Eigenvalues: Characterize linear transformations in matrices.
1️⃣9️⃣ R-squared (R²): Proportion of variance explained by regression.
2️⃣0️⃣ F1 Score: Harmonic mean of precision and recall.
2️⃣1️⃣ Expected Value: Weighted average of all possible values.
Like if you need similar content 😄👍
❤4👍2
Python Interview Questions:
Ready to test your Python skills? Let’s get started! 💻
1. How to check if a string is a palindrome?
2. How to find the factorial of a number using recursion?
3. How to merge two dictionaries in Python?
4. How to find the intersection of two lists?
5. How to generate a list of even numbers from 1 to 100?
6. How to find the longest word in a sentence?
7. How to count the frequency of elements in a list?
8. How to remove duplicates from a list while maintaining the order?
9. How to reverse a linked list in Python?
10. How to implement a simple binary search algorithm?
Here you can find essential Python Interview Resources👇
https://t.iss.one/DataSimplifier
Like for more resources like this 👍 ♥️
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
Ready to test your Python skills? Let’s get started! 💻
1. How to check if a string is a palindrome?
def is_palindrome(s):
return s == s[::-1]
print(is_palindrome("madam")) # True
print(is_palindrome("hello")) # False
2. How to find the factorial of a number using recursion?
def factorial(n):
if n == 0 or n == 1:
return 1
return n * factorial(n - 1)
print(factorial(5)) # 120
3. How to merge two dictionaries in Python?
dict1 = {'a': 1, 'b': 2}
dict2 = {'c': 3, 'd': 4}
# Method 1 (Python 3.5+)
merged_dict = {**dict1, **dict2}
# Method 2 (Python 3.9+)
merged_dict = dict1 | dict2
print(merged_dict)
4. How to find the intersection of two lists?
list1 = [1, 2, 3, 4]
list2 = [3, 4, 5, 6]
intersection = list(set(list1) & set(list2))
print(intersection) # [3, 4]
5. How to generate a list of even numbers from 1 to 100?
even_numbers = [i for i in range(1, 101) if i % 2 == 0]
print(even_numbers)
6. How to find the longest word in a sentence?
def longest_word(sentence):
words = sentence.split()
return max(words, key=len)
print(longest_word("Python is a powerful language")) # "powerful"
7. How to count the frequency of elements in a list?
from collections import Counter
my_list = [1, 2, 2, 3, 3, 3, 4]
frequency = Counter(my_list)
print(frequency) # Counter({3: 3, 2: 2, 1: 1, 4: 1})
8. How to remove duplicates from a list while maintaining the order?
def remove_duplicates(lst):
return list(dict.fromkeys(lst))
my_list = [1, 2, 2, 3, 4, 4, 5]
print(remove_duplicates(my_list)) # [1, 2, 3, 4, 5]
9. How to reverse a linked list in Python?
class Node:
def __init__(self, data):
self.data = data
self.next = None
def reverse_linked_list(head):
prev = None
current = head
while current:
next_node = current.next
current.next = prev
prev = current
current = next_node
return prev
# Create linked list: 1 -> 2 -> 3
head = Node(1)
head.next = Node(2)
head.next.next = Node(3)
# Reverse and print the list
reversed_head = reverse_linked_list(head)
while reversed_head:
print(reversed_head.data, end=" -> ")
reversed_head = reversed_head.next
10. How to implement a simple binary search algorithm?
def binary_search(arr, target):
low, high = 0, len(arr) - 1
while low <= high:
mid = (low + high) // 2
if arr[mid] == target:
return mid
elif arr[mid] < target:
low = mid + 1
else:
high = mid - 1
return -1
print(binary_search([1, 2, 3, 4, 5, 6, 7], 4)) # 3
Here you can find essential Python Interview Resources👇
https://t.iss.one/DataSimplifier
Like for more resources like this 👍 ♥️
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
❤10
Data Science Learning Plan
Step 1: Mathematics for Data Science (Statistics, Probability, Linear Algebra)
Step 2: Python for Data Science (Basics and Libraries)
Step 3: Data Manipulation and Analysis (Pandas, NumPy)
Step 4: Data Visualization (Matplotlib, Seaborn, Plotly)
Step 5: Databases and SQL for Data Retrieval
Step 6: Introduction to Machine Learning (Supervised and Unsupervised Learning)
Step 7: Data Cleaning and Preprocessing
Step 8: Feature Engineering and Selection
Step 9: Model Evaluation and Tuning
Step 10: Deep Learning (Neural Networks, TensorFlow, Keras)
Step 11: Working with Big Data (Hadoop, Spark)
Step 12: Building Data Science Projects and Portfolio
Step 1: Mathematics for Data Science (Statistics, Probability, Linear Algebra)
Step 2: Python for Data Science (Basics and Libraries)
Step 3: Data Manipulation and Analysis (Pandas, NumPy)
Step 4: Data Visualization (Matplotlib, Seaborn, Plotly)
Step 5: Databases and SQL for Data Retrieval
Step 6: Introduction to Machine Learning (Supervised and Unsupervised Learning)
Step 7: Data Cleaning and Preprocessing
Step 8: Feature Engineering and Selection
Step 9: Model Evaluation and Tuning
Step 10: Deep Learning (Neural Networks, TensorFlow, Keras)
Step 11: Working with Big Data (Hadoop, Spark)
Step 12: Building Data Science Projects and Portfolio
❤4
List of Top 12 Coding Channels on WhatsApp:
1. Python Programming:
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
2. Coding Resources:
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
3. Coding Projects:
https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
4. Coding Interviews:
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
5. Java Programming:
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
6. Javascript:
https://whatsapp.com/channel/0029VavR9OxLtOjJTXrZNi32
7. Web Development:
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
8. Artificial Intelligence:
https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
9. Data Science:
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
10. Machine Learning:
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
11. SQL:
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
12. GitHub:
https://whatsapp.com/channel/0029Vawixh9IXnlk7VfY6w43
ENJOY LEARNING 👍👍
1. Python Programming:
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
2. Coding Resources:
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
3. Coding Projects:
https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
4. Coding Interviews:
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
5. Java Programming:
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
6. Javascript:
https://whatsapp.com/channel/0029VavR9OxLtOjJTXrZNi32
7. Web Development:
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
8. Artificial Intelligence:
https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
9. Data Science:
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
10. Machine Learning:
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
11. SQL:
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
12. GitHub:
https://whatsapp.com/channel/0029Vawixh9IXnlk7VfY6w43
ENJOY LEARNING 👍👍
❤5