Python Projects & Resources
58.3K subscribers
818 photos
342 files
334 links
Perfect channel to learn Python Programming 🇮🇳
Download Free Books & Courses to master Python Programming
- Free Courses
- Projects
- Pdfs
- Bootcamps
- Notes

Admin: @Coderfun
Download Telegram
Data Science Projects With Python by Stephen Klosterman

#ebook #datascience #python #ml
👍4
Hands-On.Web.Scraping.with.Python.pdf
10.8 MB
Hands-On Web Scraping with Python - 2023
#python #en
👍18🔥2
11. Python + BeautifulSoup = Web Scraping
12. Python + Scrapy = Web Scraping and Crawling
13. Python + PySpark = Big Data Processing
14. Python + OpenCV = Computer Vision
15. Python + PyTorch = Deep Learning
16. Python + FastAPI = Web Development (high-performance APIs)
17. Python + SQLAlchemy = Database Management
18. Python + Jupyter Notebook = Interactive Computing and Data Analysis
19. Python + Celery = Distributed Task Queue
20. Python + Pygame = Game Development

#python
👍205🔥1
21. Python + Ansible = IT Automation and Configuration Management
22. Python + Fabric = Automation and Deployment
23. Python + NLTK = NLP
24. Python + spaCy = Industrial-Strength Natural Language Processing
25. Python + Bokeh = Interactive Web Visualization
26. Python + Dash = Web-Based Data Visualization
27. Python + Scikit-learn = ML
28. Python + NetworkX = Network Analysis and Graph Theory
29. Python + Twisted = Network Programming
30. Python + PyQt = GUI Application Development

#python
👍15🤔1
Python for FinTech Roadmap

Stage 1 – Learn Python (Syntax, OOP, Libraries)
Stage 2 – Understand FinTech Concepts (Finance, Payments, Regulations)
Stage 3 – Data Handling (Pandas, NumPy, CSV, APIs)
Stage 4 – Financial Modeling (Risk Analysis, Pricing Models)
Stage 5 – Automation (Web Scraping, Report Generation)
Stage 6 – Security (Encryption, Compliance)
Stage 7 – Build Financial Tools (Payment Gateways, Trading Bots)
Stage 8 – Deploy FinTech Apps (Cloud, SaaS)

🏆Python FinTech Developer

#python
👍11🔥4
If you want to learn Python for data analysis prioritise:

- NumPy (maths)

- Pandas (data wrangling)

- Matplotlib (Data visualisation)

- Seaborn (built on top of matplotlib, has higher level interface capabilities)

- OS (Operating System Interaction for working with files and folders)

Master the above and you'll be able to defend yourself against any data requests that come your way.

#python
👍22👏2
Python Full Stack Developer Roadmap – 2025

🔹 Stage 1: HTML – Learn the basics of web page structure.

🔹 Stage 2: CSS – Style and enhance web pages.

🔹 Stage 3: JavaScript – Add interactivity to your site.

🔹 Stage 4: Git & GitHub – Manage code versions efficiently.

🔹 Stage 5: Frontend Project – Build a simple project to apply your skills.

🔹 Stage 6: Python (Core + OOP) – Master Python fundamentals and object-oriented programming.

#python
👍91
Don't Confuse to learn Python.

Learn This Concept to be proficient in Python.

𝗕𝗮𝘀𝗶𝗰𝘀 𝗼𝗳 𝗣𝘆𝘁𝗵𝗼𝗻:
- Python Syntax
- Data Types
- Variables
- Operators
- Control Structures:
if-elif-else
Loops
Break and Continue
try-except block
- Functions
- Modules and Packages

𝗢𝗯𝗷𝗲𝗰𝘁-𝗢𝗿𝗶𝗲𝗻𝘁𝗲𝗱 𝗣𝗿𝗼𝗴𝗿𝗮𝗺𝗺𝗶𝗻𝗴 𝗶𝗻 𝗣𝘆𝘁𝗵𝗼𝗻:
- Classes and Objects
- Inheritance
- Polymorphism
- Encapsulation
- Abstraction

𝗣𝘆𝘁𝗵𝗼𝗻 𝗟𝗶𝗯𝗿𝗮𝗿𝗶𝗲𝘀:
- Pandas
- Numpy

𝗣𝗮𝗻𝗱𝗮𝘀:
- What is Pandas?
- Installing Pandas
- Importing Pandas
- Pandas Data Structures (Series, DataFrame, Index)

𝗪𝗼𝗿𝗸𝗶𝗻𝗴 𝘄𝗶𝘁𝗵 𝗗𝗮𝘁𝗮𝗙𝗿𝗮𝗺𝗲𝘀:
- Creating DataFrames
- Accessing Data in DataFrames
- Filtering and Selecting Data
- Adding and Removing Columns
- Merging and Joining DataFrames
- Grouping and Aggregating Data
- Pivot Tables

𝗗𝗮𝘁𝗮 𝗖𝗹𝗲𝗮𝗻𝗶𝗻𝗴 𝗮𝗻𝗱 𝗣𝗿𝗲𝗽𝗮𝗿𝗮𝘁𝗶𝗼𝗻:
- Handling Missing Values
- Handling Duplicates
- Data Formatting
- Data Transformation
- Data Normalization

𝗔𝗱𝘃𝗮𝗻𝗰𝗲𝗱 𝗧𝗼𝗽𝗶𝗰𝘀:
- Handling Large Datasets with Dask
- Handling Categorical Data with Pandas
- Handling Text Data with Pandas
- Using Pandas with Scikit-learn
- Performance Optimization with Pandas

𝗗𝗮𝘁𝗮 𝗦𝘁𝗿𝘂𝗰𝘁𝘂𝗿𝗲𝘀 𝗶𝗻 𝗣𝘆𝘁𝗵𝗼𝗻:
- Lists
- Tuples
- Dictionaries
- Sets

𝗙𝗶𝗹𝗲 𝗛𝗮𝗻𝗱𝗹𝗶𝗻𝗴 𝗶𝗻 𝗣𝘆𝘁𝗵𝗼𝗻:
- Reading and Writing Text Files
- Reading and Writing Binary Files
- Working with CSV Files
- Working with JSON Files

𝗡𝘂𝗺𝗽𝘆:
- What is NumPy?
- Installing NumPy
- Importing NumPy
- NumPy Arrays

𝗡𝘂𝗺𝗣𝘆 𝗔𝗿𝗿𝗮𝘆 𝗢𝗽𝗲𝗿𝗮𝘁𝗶𝗼𝗻𝘀:
- Creating Arrays
- Accessing Array Elements
- Slicing and Indexing
- Reshaping Arrays
- Combining Arrays
- Splitting Arrays
- Arithmetic Operations
- Broadcasting

𝗪𝗼𝗿𝗸𝗶𝗻𝗴 𝘄𝗶𝘁𝗵 𝗗𝗮𝘁𝗮 𝗶𝗻 𝗡𝘂𝗺𝗣𝘆:
- Reading and Writing Data with NumPy
- Filtering and Sorting Data
- Data Manipulation with NumPy
- Interpolation
- Fourier Transforms
- Window Functions

𝗣𝗲𝗿𝗳𝗼𝗿𝗺𝗮𝗻𝗰𝗲 𝗢𝗽𝘁𝗶𝗺𝗶𝘇𝗮𝘁𝗶𝗼𝗻 𝘄𝗶𝘁𝗵 𝗡𝘂𝗺𝗣𝘆:
- Vectorization
- Memory Management
- Multithreading and Multiprocessing
- Parallel Computing

I have curated the best resources to learn Python 👇👇
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

Hope you'll like it

Like this post if you need more resources like this 👍❤️

#Python
👍53
🐍 𝐏𝐲𝐭𝐡𝐨𝐧 𝐟𝐞𝐥𝐭 𝐢𝐦𝐩𝐨𝐬𝐬𝐢𝐛𝐥𝐞 𝐚𝐭 𝐟𝐢𝐫𝐬𝐭, 𝐛𝐮𝐭 𝐭𝐡𝐞𝐬𝐞 𝟗 𝐬𝐭𝐞𝐩𝐬 𝐜𝐡𝐚𝐧𝐠𝐞𝐝 𝐞𝐯𝐞𝐫𝐲𝐭𝐡𝐢𝐧𝐠!
.
.
1️⃣ 𝐌𝐚𝐬𝐭𝐞𝐫𝐞𝐝 𝐭𝐡𝐞 𝐁𝐚𝐬𝐢𝐜𝐬: Started with foundational Python concepts like variables, loops, functions, and conditional statements.

2️⃣ 𝐏𝐫𝐚𝐜𝐭𝐢𝐜𝐞𝐝 𝐄𝐚𝐬𝐲 𝐏𝐫𝐨𝐛𝐥𝐞𝐦𝐬: Focused on beginner-friendly problems on platforms like LeetCode and HackerRank to build confidence.

3️⃣ 𝐅𝐨𝐥𝐥𝐨𝐰𝐞𝐝 𝐏𝐲𝐭𝐡𝐨𝐧-𝐒𝐩𝐞𝐜𝐢𝐟𝐢𝐜 𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐬: Studied essential problem-solving techniques for Python, like list comprehensions, dictionary manipulations, and lambda functions.

4️⃣ 𝐋𝐞𝐚𝐫𝐧𝐞𝐝 𝐊𝐞𝐲 𝐋𝐢𝐛𝐫𝐚𝐫𝐢𝐞𝐬: Explored popular libraries like Pandas, NumPy, and Matplotlib for data manipulation, analysis, and visualization.

5️⃣ 𝐅𝐨𝐜𝐮𝐬𝐞𝐝 𝐨𝐧 𝐏𝐫𝐨𝐣𝐞𝐜𝐭𝐬: Built small projects like a to-do app, calculator, or data visualization dashboard to apply concepts.

6️⃣ 𝐖𝐚𝐭𝐜𝐡𝐞𝐝 𝐓𝐮𝐭𝐨𝐫𝐢𝐚𝐥𝐬: Followed creators like CodeWithHarry and Shradha Khapra for in-depth Python tutorials.

7️⃣ 𝐃𝐞𝐛𝐮𝐠𝐠𝐞𝐝 𝐑𝐞𝐠𝐮𝐥𝐚𝐫𝐥𝐲: Made it a habit to debug and analyze code to understand errors and optimize solutions.

8️⃣ 𝐉𝐨𝐢𝐧𝐞𝐝 𝐌𝐨𝐜𝐤 𝐂𝐨𝐝𝐢𝐧𝐠 𝐂𝐡𝐚𝐥𝐥𝐞𝐧𝐠𝐞𝐬: Participated in coding challenges to simulate real-world problem-solving scenarios.

9️⃣ 𝐒𝐭𝐚𝐲𝐞𝐝 𝐂𝐨𝐧𝐬𝐢𝐬𝐭𝐞𝐧𝐭: Practiced daily, worked on diverse problems, and never skipped Python for more than a day.

I have curated the best interview resources to crack Python Interviews 👇👇
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

Hope you'll like it

Like this post if you need more resources like this 👍❤️

#Python
👍5
Python For Everything!🐍

Python, the versatile language, can be combined with various libraries to build amazing things:🚀

1. Python + Pandas = Data Manipulation
2. Python + Scikit-Learn = Machine Learning
3. Python + TensorFlow = Deep Learning
4. Python + Matplotlib = Data Visualization
5. Python + Seaborn = Advanced Visualization
6. Python + Flask = Web Development
7. Python + Pygame = Game Development
8. Python + Kivy = Mobile App Development

#Python
👍101
🐍 𝐏𝐲𝐭𝐡𝐨𝐧 𝐟𝐞𝐥𝐭 𝐢𝐦𝐩𝐨𝐬𝐬𝐢𝐛𝐥𝐞 𝐚𝐭 𝐟𝐢𝐫𝐬𝐭, 𝐛𝐮𝐭 𝐭𝐡𝐞𝐬𝐞 𝟗 𝐬𝐭𝐞𝐩𝐬 𝐜𝐡𝐚𝐧𝐠𝐞𝐝 𝐞𝐯𝐞𝐫𝐲𝐭𝐡𝐢𝐧𝐠!
.
.
1️⃣ 𝐌𝐚𝐬𝐭𝐞𝐫𝐞𝐝 𝐭𝐡𝐞 𝐁𝐚𝐬𝐢𝐜𝐬: Started with foundational Python concepts like variables, loops, functions, and conditional statements.

2️⃣ 𝐏𝐫𝐚𝐜𝐭𝐢𝐜𝐞𝐝 𝐄𝐚𝐬𝐲 𝐏𝐫𝐨𝐛𝐥𝐞𝐦𝐬: Focused on beginner-friendly problems on platforms like LeetCode and HackerRank to build confidence.

3️⃣ 𝐅𝐨𝐥𝐥𝐨𝐰𝐞𝐝 𝐏𝐲𝐭𝐡𝐨𝐧-𝐒𝐩𝐞𝐜𝐢𝐟𝐢𝐜 𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐬: Studied essential problem-solving techniques for Python, like list comprehensions, dictionary manipulations, and lambda functions.

4️⃣ 𝐋𝐞𝐚𝐫𝐧𝐞𝐝 𝐊𝐞𝐲 𝐋𝐢𝐛𝐫𝐚𝐫𝐢𝐞𝐬: Explored popular libraries like Pandas, NumPy, and Matplotlib for data manipulation, analysis, and visualization.

5️⃣ 𝐅𝐨𝐜𝐮𝐬𝐞𝐝 𝐨𝐧 𝐏𝐫𝐨𝐣𝐞𝐜𝐭𝐬: Built small projects like a to-do app, calculator, or data visualization dashboard to apply concepts.

6️⃣ 𝐖𝐚𝐭𝐜𝐡𝐞𝐝 𝐓𝐮𝐭𝐨𝐫𝐢𝐚𝐥𝐬: Followed creators like CodeWithHarry and Shradha Khapra for in-depth Python tutorials.

7️⃣ 𝐃𝐞𝐛𝐮𝐠𝐠𝐞𝐝 𝐑𝐞𝐠𝐮𝐥𝐚𝐫𝐥𝐲: Made it a habit to debug and analyze code to understand errors and optimize solutions.

8️⃣ 𝐉𝐨𝐢𝐧𝐞𝐝 𝐌𝐨𝐜𝐤 𝐂𝐨𝐝𝐢𝐧𝐠 𝐂𝐡𝐚𝐥𝐥𝐞𝐧𝐠𝐞𝐬: Participated in coding challenges to simulate real-world problem-solving scenarios.

9️⃣ 𝐒𝐭𝐚𝐲𝐞𝐝 𝐂𝐨𝐧𝐬𝐢𝐬𝐭𝐞𝐧𝐭: Practiced daily, worked on diverse problems, and never skipped Python for more than a day.

I have curated the best interview resources to crack Python Interviews 👇👇
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

Hope you'll like it

Like this post if you need more resources like this 👍❤️

#Python
👍72
Python is a popular programming language in the field of data analysis due to its versatility, ease of use, and extensive libraries for data manipulation, visualization, and analysis. Here are some key Python skills that are important for data analysts:

1. Basic Python Programming: Understanding basic Python syntax, data types, control structures, functions, and object-oriented programming concepts is essential for data analysis in Python.

2. NumPy: NumPy is a fundamental package for scientific computing in Python. It provides support for large multidimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays.

3. Pandas: Pandas is a powerful library for data manipulation and analysis in Python. It provides data structures like DataFrames and Series that make it easy to work with structured data and perform tasks such as filtering, grouping, joining, and reshaping data.

4. Matplotlib and Seaborn: Matplotlib is a versatile library for creating static, interactive, and animated visualizations in Python. Seaborn is built on top of Matplotlib and provides a higher-level interface for creating attractive statistical graphics.

5. Scikit-learn: Scikit-learn is a popular machine learning library in Python that provides tools for building predictive models, performing clustering and classification tasks, and evaluating model performance.

6. Jupyter Notebooks: Jupyter Notebooks are an interactive computing environment that allows you to create and share documents containing live code, equations, visualizations, and narrative text. They are commonly used by data analysts for exploratory data analysis and sharing insights.

7. SQLAlchemy: SQLAlchemy is a Python SQL toolkit and Object-Relational Mapping (ORM) library that provides a high-level interface for interacting with relational databases using Python.

8. Regular Expressions: Regular expressions (regex) are powerful tools for pattern matching and text processing in Python. They are useful for extracting specific information from text data or performing data cleaning tasks.

9. Data Visualization Libraries: In addition to Matplotlib and Seaborn, data analysts may also use other visualization libraries like Plotly, Bokeh, or Altair to create interactive visualizations in Python.

10. Web Scraping: Knowledge of web scraping techniques using libraries like BeautifulSoup or Scrapy can be useful for collecting data from websites for analysis.

By mastering these Python skills and applying them to real-world data analysis projects, you can enhance your proficiency as a data analyst and unlock new opportunities in the field.

#Python
5
Most popular Python libraries for data visualization:

Matplotlib – The most fundamental library for static charts. Best for basic visualizations like line, bar, and scatter plots. Highly customizable but requires more coding.

Seaborn – Built on Matplotlib, it simplifies statistical data visualization with beautiful defaults. Ideal for correlation heatmaps, categorical plots, and distribution analysis.

Plotly – Best for interactive visualizations with zooming, hovering, and real-time updates. Great for dashboards, web applications, and 3D plotting.

Bokeh – Designed for interactive and web-based visualizations. Excellent for handling large datasets, streaming data, and integrating with Flask/Django.

Altair – A declarative library that makes complex statistical plots easy with minimal code. Best for quick and clean data exploration.

For static charts, start with Matplotlib or Seaborn. If you need interactivity, use Plotly or Bokeh. For quick EDA, Altair is a great choice.

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)

#python
5
Top 10 Python Concepts
Variables & Data Types

Understand integers, floats, strings, booleans, lists, tuples, sets, and dictionaries.

Control Flow (if, else, elif)
Write logic-based programs using conditional statements.

Loops (for & while)
Automate tasks and iterate over data efficiently.

Functions
Build reusable code blocks with def, understand parameters, return values, and scope.

List Comprehensions
Create and transform lists concisely:
[x*2 for x in range(10) if x % 2 == 0]

Modules & Packages
Import built-in, third-party, or custom modules to structure your code.

Exception Handling
Handle errors using try, except, finally for robust programs.

Object-Oriented Programming (OOP)
Learn classes, objects, inheritance, encapsulation, and polymorphism.

File Handling
Open, read, write, and manage files using open(), read(), write().

Working with Libraries
Use powerful libraries like:
- NumPy for numerical operations
- Pandas for data analysis
- Matplotlib/Seaborn for visualization
- Requests for API calls
- JSON for data parsing

#python
10