Python Projects & Resources
58.1K subscribers
817 photos
342 files
333 links
Perfect channel to learn Python Programming 🇮🇳
Download Free Books & Courses to master Python Programming
- Free Courses
- Projects
- Pdfs
- Bootcamps
- Notes

Admin: @Coderfun
Download Telegram
⌨️ Python String Formatting Based on placeholder
👍7
⌨️ QR code generation in Python
👍11🔥2
In general, the Python standard library includes many built-in functions that are available to use in your code without needing to import any additional modules. Some common examples of built-in functions include:

👉🏻 abs() : Returns the absolute value of a number.

👉🏻 all() : Returns True if all elements of an iterable are True, and False otherwise.

👉🏻 any() : Returns True if any element of an iterable is True, and False otherwise.

👉🏻 bin() : Converts an integer to a binary string.

👉🏻 bool() : Converts a value to a Boolean.

👉🏻 chr() : Returns the string representation of a Unicode character.

👉🏻 dir() : Returns a list of attributes and methods for an object.

👉🏻enumerate(): Returns an enumerate object, which contains a sequence of tuples containing the index and value of each element of an iterable.

👉🏻 filter() : Returns an iterator for elements of an iterable for which a condition is True.

👉🏻 float() : Converts a value to a floating-point number.

👉🏻 format(): Formats a string using format specifiers.

👉🏻 hash() : Returns the hash value of an object.

👉🏻 int() : Converts a value to an integer.

👉🏻 isinstance(): Returns True if an object is an instance of a given type, and False otherwise.

👉🏻 len() : Returns the length of an object.

👉🏻 list() : Converts an iterable to a list.

👉🏻 map() : Returns an iterator that applies a function to each element of an iterable.

👉🏻 max() : Returns the maximum value of an iterable.

👉🏻 min() : Returns the minimum value of an iterable.

👉🏻 next() : Returns the next element of an iterator.

👉🏻 open() : Opens a file and returns a file object.

👉🏻 ord() : Returns the Unicode code point for a character.

👉🏻 print() : Prints a message to the standard output.

👉🏻 range() : Returns a sequence of numbers.

👉🏻 repr() : Returns a string representation of an object.

👉🏻 round() : Rounds a number to a specified number of decimal places.

👉🏻 set() : Creates a set object.

👉🏻 sorted() : Returns a sorted list from an iterable.

👉🏻 str() : Converts a value to a string.

👉🏻 sum() : Returns the sum of elements in an iterable.

👉🏻 type() : Returns the type of an object.

👉🏻 zip() : Returns an iterator that combines elements from multiple iterables.
👍237
⌨️ Functions You Should Know
👍32
While loop in Python
👍7🔥3
Secure Your Online Accounts NOW: Master 2FA Bypass Prevention!

🚨 Are Your Online Accounts Truly Safe?

Learn how hackers bypass 2FA and OTP systems, and discover practical steps to protect your Gmail, Yahoo, Office accounts, and more!

🔐 What You'll Learn:

How 2FA bypasses happen
Simple tips to block account takeovers
Must-know cybersecurity practices

🎥 Exclusive Video Content: Click below for actionable insights!

Stay a step ahead of hackers 👇
https://t.iss.one/+ZSBlgEA15JswMTc8
👍3
Python String........😊😊😊
👍152
⌨️ Top Python Frameworks and Libraries
👍11
Python Customer Segmentation Tool Roadmap

Stage 1 - Learn Python (Basics, Pandas, Scikit-learn)
Stage 2 - Study Clustering Methods (K-means, DBSCAN)
Stage 3 - Clean & Prepare Data (Normalization, Feature Engineering)
Stage 4 - Apply Clustering Algorithms (Scikit-learn)
Stage 5 - Analyze & Visualize Results (Heatmaps, Charts)
Stage 6 - Add User Input Options (GUI, CLI)
Stage 7 - Test and Tune Models (Cross-validation)
Stage 8 - Deploy Tool (Web or Local Use)

🏆– Python Customer Segmentation Tool
👍84
Python Statistical Analysis Suite Roadmap

Stage 1 - Learn Python (Basics, Pandas, SciPy)
Stage 2 - Study Statistics (Regression, Hypothesis Testing)
Stage 3 - Explore Libraries (Statsmodels, Scikit-learn)
Stage 4 - Implement Basic Statistical Methods (ANOVA, T-tests)
Stage 5 - Build Analysis Pipelines (Reusable Code)
Stage 6 - Add Visualization (Plotly, Matplotlib)
Stage 7 - Validate Results (Real Datasets, Testing)
Stage 8 - Create UI (Dash, Streamlit)

🏆 – Python Statistical Analysis Suite
👍8
Python Automated Report Generator Roadmap

Stage 1 - Learn Python (Syntax, Jupyter, Pandas)
Stage 2 - Study Report Structure (Sections, Visualizations)
Stage 3 - Automate Data Processing (Scripts, Pipelines)
Stage 4 - Generate Reports (Markdown, Notebooks)
Stage 5 - Add Export Options (PDF, HTML)
Stage 6 - Enhance Visuals (Plotly, Matplotlib)
Stage 7 - Integrate Feedback Loops (Adjust Insights)
Stage 8 - Deploy Automation (Schedulers, Web Access)

🏆Python Automated Report Generator
👍8
Python Interactive Data Dashboard Roadmap

Stage 1 - Learn Python (Basics, Pandas, Plotly/Bokeh)
Stage 2 - Study Data Visualization (Charts, Graphs)
Stage 3 - Build Basic Dashboard (Plotly/Bokeh)
Stage 4 - Add Interactivity (Filters, Tooltips)
Stage 5 - Handle Large Datasets (Aggregation, Caching)
Stage 6 - Develop Responsive UI (CSS, JavaScript)
Stage 7 - Host on Web Framework (Flask/Dash)
Stage 8 - Deploy Online (Cloud, User Feedback)

🏆Python Interactive Data Dashboard
4👍2
Essential Python Libraries
👍12
⌨️ Python Roadmap
👍16
Python Note Finder Software Roadmap

Stage 1 - Python Basics (OOP, File I/O)
Stage 2 - Music Theory Basics (Notes, Scales, Chords)
Stage 3 - Audio Processing (librosa, pydub)
Stage 4 - Feature Extraction (FFT, Pitch Detection)
Stage 5 - Machine Learning (Train Models to Identify Notes)
Stage 6 - GUI (Tkinter, PyQt for Note Visualization)
Stage 7 - Error Handling (Misclassified Notes)
Stage 8 - Optimization (Real-Time Processing)

🏆 – Python Note Finder Software
👍8
Python Data Cleaning Automation Roadmap

Stage 1 - Learn Python (Syntax, Pandas, NumPy)
Stage 2 - Study Data Cleaning (Duplicates, Null Values)
Stage 3 - Implement Cleaning Functions (Scripts, Pipelines)
Stage 4 - Add User Input Handling (CLI/GUI)
Stage 5 - Test on Real Datasets (CSV, SQL)
Stage 6 - Optimize Performance (Vectorization, Memory Use)
Stage 7 - Add Automation (Scheduling, Batch Jobs)
Stage 8 - Deploy Tool (Package, Cloud, Distribution)

🏆 – Python Data Cleaning Automation
5👍2🔥1
⌨️ 4 Hidden features of Python
🔥85👍1