Data Science Learning Plan
Step 1: Mathematics for Data Science (Statistics, Probability, Linear Algebra)
Step 2: Python for Data Science (Basics and Libraries)
Step 3: Data Manipulation and Analysis (Pandas, NumPy)
Step 4: Data Visualization (Matplotlib, Seaborn, Plotly)
Step 5: Databases and SQL for Data Retrieval
Step 6: Introduction to Machine Learning (Supervised and Unsupervised Learning)
Step 7: Data Cleaning and Preprocessing
Step 8: Feature Engineering and Selection
Step 9: Model Evaluation and Tuning
Step 10: Deep Learning (Neural Networks, TensorFlow, Keras)
Step 11: Working with Big Data (Hadoop, Spark)
Step 12: Building Data Science Projects and Portfolio
Data Science Interview Resources
👇👇
https://t.iss.one/DataScienceInterviews
Like for more 😄
Step 1: Mathematics for Data Science (Statistics, Probability, Linear Algebra)
Step 2: Python for Data Science (Basics and Libraries)
Step 3: Data Manipulation and Analysis (Pandas, NumPy)
Step 4: Data Visualization (Matplotlib, Seaborn, Plotly)
Step 5: Databases and SQL for Data Retrieval
Step 6: Introduction to Machine Learning (Supervised and Unsupervised Learning)
Step 7: Data Cleaning and Preprocessing
Step 8: Feature Engineering and Selection
Step 9: Model Evaluation and Tuning
Step 10: Deep Learning (Neural Networks, TensorFlow, Keras)
Step 11: Working with Big Data (Hadoop, Spark)
Step 12: Building Data Science Projects and Portfolio
Data Science Interview Resources
👇👇
https://t.iss.one/DataScienceInterviews
Like for more 😄
❤7🔥1
𝐈𝐦𝐩𝐨𝐫𝐭𝐢𝐧𝐠 𝐍𝐞𝐜𝐞𝐬𝐬𝐚𝐫𝐲 𝐋𝐢𝐛𝐫𝐚𝐫𝐢𝐞𝐬:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
𝐋𝐨𝐚𝐝𝐢𝐧𝐠 𝐭𝐡𝐞 𝐃𝐚𝐭𝐚𝐬𝐞𝐭:
df = pd.read_csv('your_dataset.csv')
𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐃𝐚𝐭𝐚 𝐈𝐧𝐬𝐩𝐞𝐜𝐭𝐢𝐨𝐧:
1- View the first few rows:
df.head()
2- Summary of the dataset:
df.info()
3- Statistical summary:
df.describe()
𝐇𝐚𝐧𝐝𝐥𝐢𝐧𝐠 𝐌𝐢𝐬𝐬𝐢𝐧𝐠 𝐕𝐚𝐥𝐮𝐞𝐬:
1- Identify missing values:
df.isnull().sum()
2- Visualize missing values:
sns.heatmap(df.isnull(), cbar=False, cmap='viridis')
plt.show()
𝐃𝐚𝐭𝐚 𝐕𝐢𝐬𝐮𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧:
1- Histograms:
df.hist(bins=30, figsize=(20, 15))
plt.show()
2 - Box plots:
plt.figure(figsize=(10, 6))
sns.boxplot(data=df)
plt.xticks(rotation=90)
plt.show()
3- Pair plots:
sns.pairplot(df)
plt.show()
4- Correlation matrix and heatmap:
correlation_matrix = df.corr()
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.show()
𝐂𝐚𝐭𝐞𝐠𝐨𝐫𝐢𝐜𝐚𝐥 𝐃𝐚𝐭𝐚 𝐀𝐧𝐚𝐥𝐲𝐬𝐢𝐬:
Count plots for categorical features:
plt.figure(figsize=(10, 6))
sns.countplot(x='categorical_column', data=df)
plt.show()
Python Interview Q&A: https://whatsapp.com/channel/0029Vau5fZECsU9HJFLacm2a
Like for more ❤️
ENJOY LEARNING 👍👍
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
𝐋𝐨𝐚𝐝𝐢𝐧𝐠 𝐭𝐡𝐞 𝐃𝐚𝐭𝐚𝐬𝐞𝐭:
df = pd.read_csv('your_dataset.csv')
𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐃𝐚𝐭𝐚 𝐈𝐧𝐬𝐩𝐞𝐜𝐭𝐢𝐨𝐧:
1- View the first few rows:
df.head()
2- Summary of the dataset:
df.info()
3- Statistical summary:
df.describe()
𝐇𝐚𝐧𝐝𝐥𝐢𝐧𝐠 𝐌𝐢𝐬𝐬𝐢𝐧𝐠 𝐕𝐚𝐥𝐮𝐞𝐬:
1- Identify missing values:
df.isnull().sum()
2- Visualize missing values:
sns.heatmap(df.isnull(), cbar=False, cmap='viridis')
plt.show()
𝐃𝐚𝐭𝐚 𝐕𝐢𝐬𝐮𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧:
1- Histograms:
df.hist(bins=30, figsize=(20, 15))
plt.show()
2 - Box plots:
plt.figure(figsize=(10, 6))
sns.boxplot(data=df)
plt.xticks(rotation=90)
plt.show()
3- Pair plots:
sns.pairplot(df)
plt.show()
4- Correlation matrix and heatmap:
correlation_matrix = df.corr()
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.show()
𝐂𝐚𝐭𝐞𝐠𝐨𝐫𝐢𝐜𝐚𝐥 𝐃𝐚𝐭𝐚 𝐀𝐧𝐚𝐥𝐲𝐬𝐢𝐬:
Count plots for categorical features:
plt.figure(figsize=(10, 6))
sns.countplot(x='categorical_column', data=df)
plt.show()
Python Interview Q&A: https://whatsapp.com/channel/0029Vau5fZECsU9HJFLacm2a
Like for more ❤️
ENJOY LEARNING 👍👍
❤11🔥1