๐ปNapkins
๐ Napkins is an innovative open-source platform designed to automatically convert screenshots or web design prototypes into full-fledged application code.
๐ฐUsers can upload an image of a website layout, and the system then uses the Llama 4 computer vision model and Together AI framework to generate source code based on React and Tailwind CSS.
๐Links:
https://github.com/nutlope/napkins
๐ Napkins is an innovative open-source platform designed to automatically convert screenshots or web design prototypes into full-fledged application code.
๐ฐUsers can upload an image of a website layout, and the system then uses the Llama 4 computer vision model and Together AI framework to generate source code based on React and Tailwind CSS.
๐Links:
https://github.com/nutlope/napkins
โค2
7 Free Kaggle Micro-Courses for Data Science Beginners with Certification
Python
https://www.kaggle.com/learn/python
Pandas
https://www.kaggle.com/learn/pandas
Data visualization
https://www.kaggle.com/learn/data-visualization
Intro to sql
https://www.kaggle.com/learn/intro-to-sql
Advanced Sql
https://www.kaggle.com/learn/advanced-sql
Intro to ML
https://www.kaggle.com/learn/intro-to-machine-learning
Advanced ML
https://www.kaggle.com/learn/intermediate-machine-learning
#datascienceprojects #kaggle
Python
https://www.kaggle.com/learn/python
Pandas
https://www.kaggle.com/learn/pandas
Data visualization
https://www.kaggle.com/learn/data-visualization
Intro to sql
https://www.kaggle.com/learn/intro-to-sql
Advanced Sql
https://www.kaggle.com/learn/advanced-sql
Intro to ML
https://www.kaggle.com/learn/intro-to-machine-learning
Advanced ML
https://www.kaggle.com/learn/intermediate-machine-learning
#datascienceprojects #kaggle
โค1
20 Must-Know Statistics Questions for Data Analyst and Business Analyst Roles (With Detailed Answers)
1. What is the difference between descriptive and inferential statistics?
Descriptive statistics summarize and organize data (e.g., mean, median, mode).
Inferential statistics make predictions or inferences about a population based on a sample (e.g., hypothesis testing, confidence intervals).
2. Explain mean, median, and mode and when to use each.
Mean is the average; use when data is symmetrically distributed.
Median is the middle value; best when data has outliers.
Mode is the most frequent value; useful for categorical data.
3. What is standard deviation, and why is it important?
It measures data spread around the mean. A low value = less variability; high value = more spread. Important for understanding consistency and risk.
4. Define correlation vs. causation with examples.
Correlation: Two variables move together but don't cause each other (e.g., ice cream sales and drowning).
Causation: One variable directly affects another (e.g., smoking causes lung cancer).
5. What is a p-value, and how do you interpret it?
P-value measures the probability of observing results given that the null hypothesis is true. A small p-value (typically < 0.05) suggests rejecting the null.
6. Explain the concept of confidence intervals.
A range of values used to estimate a population parameter. A 95% CI means there's a 95% chance the true value falls within the range.
7. What are outliers, and how can you handle them?
Outliers are extreme values differing significantly from others. Handle using:
Removal (if due to error)
Transformation
Capping (e.g., winsorizing)
8. When would you use a t-test vs. a z-test?
T-test: Small samples (n < 30) and unknown population standard deviation.
Z-test: Large samples and known standard deviation.
9. What is the Central Limit Theorem (CLT), and why is it important?
CLT states that the sampling distribution of the sample mean approaches a normal distribution as sample size grows, regardless of population distribution. Essential for inference.
10. Explain the difference between population and sample.
Population: Entire group of interest.
Sample: Subset used for analysis. Inference is made from the sample to the population.
11. What is regression analysis, and what are its key assumptions?
Predicts a dependent variable using one or more independent variables.
Assumptions: Linearity, independence, homoscedasticity, no multicollinearity, normality of residuals.
12. How do you calculate probability, and why does it matter in analytics?
Probability = (Favorable outcomes) / (Total outcomes).
Critical for risk estimation, decision-making, and predictions.
13. Explain the concept of Bayesโ Theorem with a practical example.
Bayesโ updates the probability of an event based on new evidence:
P(A|B) = [P(B|A) * P(A)] / P(B)
Example: Calculating disease probability given a positive test result.
14. What is an ANOVA test, and when should it be used?
ANOVA (Analysis of Variance) compares means across 3+ groups to see if at least one differs.
Use when comparing more than two groups.
15. Define skewness and kurtosis in a dataset.
Skewness: Measure of asymmetry (positive = right-skewed, negative = left).
Kurtosis: Measure of tail thickness (high kurtosis = heavy tails, outliers).
16. What is the difference between parametric and non-parametric tests?
Parametric: Assumes data follows a distribution (e.g., t-test).
Non-parametric: No assumptions; use with skewed or ordinal data (e.g., Mann-Whitney U).
17. What are Type I and Type II errors in hypothesis testing?
Type I error: False positive (rejecting a true null).
Type II error: False negative (failing to reject a false null).
18. How do you handle missing data in a dataset?
Methods:
Deletion (listwise or pairwise)
Imputation (mean, median, mode, regression)
Advanced: KNN, MICE
1. What is the difference between descriptive and inferential statistics?
Descriptive statistics summarize and organize data (e.g., mean, median, mode).
Inferential statistics make predictions or inferences about a population based on a sample (e.g., hypothesis testing, confidence intervals).
2. Explain mean, median, and mode and when to use each.
Mean is the average; use when data is symmetrically distributed.
Median is the middle value; best when data has outliers.
Mode is the most frequent value; useful for categorical data.
3. What is standard deviation, and why is it important?
It measures data spread around the mean. A low value = less variability; high value = more spread. Important for understanding consistency and risk.
4. Define correlation vs. causation with examples.
Correlation: Two variables move together but don't cause each other (e.g., ice cream sales and drowning).
Causation: One variable directly affects another (e.g., smoking causes lung cancer).
5. What is a p-value, and how do you interpret it?
P-value measures the probability of observing results given that the null hypothesis is true. A small p-value (typically < 0.05) suggests rejecting the null.
6. Explain the concept of confidence intervals.
A range of values used to estimate a population parameter. A 95% CI means there's a 95% chance the true value falls within the range.
7. What are outliers, and how can you handle them?
Outliers are extreme values differing significantly from others. Handle using:
Removal (if due to error)
Transformation
Capping (e.g., winsorizing)
8. When would you use a t-test vs. a z-test?
T-test: Small samples (n < 30) and unknown population standard deviation.
Z-test: Large samples and known standard deviation.
9. What is the Central Limit Theorem (CLT), and why is it important?
CLT states that the sampling distribution of the sample mean approaches a normal distribution as sample size grows, regardless of population distribution. Essential for inference.
10. Explain the difference between population and sample.
Population: Entire group of interest.
Sample: Subset used for analysis. Inference is made from the sample to the population.
11. What is regression analysis, and what are its key assumptions?
Predicts a dependent variable using one or more independent variables.
Assumptions: Linearity, independence, homoscedasticity, no multicollinearity, normality of residuals.
12. How do you calculate probability, and why does it matter in analytics?
Probability = (Favorable outcomes) / (Total outcomes).
Critical for risk estimation, decision-making, and predictions.
13. Explain the concept of Bayesโ Theorem with a practical example.
Bayesโ updates the probability of an event based on new evidence:
P(A|B) = [P(B|A) * P(A)] / P(B)
Example: Calculating disease probability given a positive test result.
14. What is an ANOVA test, and when should it be used?
ANOVA (Analysis of Variance) compares means across 3+ groups to see if at least one differs.
Use when comparing more than two groups.
15. Define skewness and kurtosis in a dataset.
Skewness: Measure of asymmetry (positive = right-skewed, negative = left).
Kurtosis: Measure of tail thickness (high kurtosis = heavy tails, outliers).
16. What is the difference between parametric and non-parametric tests?
Parametric: Assumes data follows a distribution (e.g., t-test).
Non-parametric: No assumptions; use with skewed or ordinal data (e.g., Mann-Whitney U).
17. What are Type I and Type II errors in hypothesis testing?
Type I error: False positive (rejecting a true null).
Type II error: False negative (failing to reject a false null).
18. How do you handle missing data in a dataset?
Methods:
Deletion (listwise or pairwise)
Imputation (mean, median, mode, regression)
Advanced: KNN, MICE
โค2
Top WhatsApp channels for Free Learning ๐๐
Free Courses with Certificate: https://whatsapp.com/channel/0029Vamhzk5JENy1Zg9KmO2g
Data Analysts: https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
MS Excel: https://whatsapp.com/channel/0029VaifY548qIzv0u1AHz3i
Jobs & Internship Opportunities:
https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
Web Development: https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
Python Free Books & Projects: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Java Resources: https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
Coding Interviews: https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
SQL: https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
Power BI: https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c
Programming Free Resources: https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
Data Science Projects: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Learn Data Science & Machine Learning: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Improve your communication skills: https://whatsapp.com/channel/0029VaiaucV4NVik7Fx6HN2n
Learn Ethical Hacking and Cybersecurity: https://whatsapp.com/channel/0029VancSnGG8l5KQYOOyL1T
Donโt worry Guys your contact number will stay hidden!
ENJOY LEARNING ๐๐
Free Courses with Certificate: https://whatsapp.com/channel/0029Vamhzk5JENy1Zg9KmO2g
Data Analysts: https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
MS Excel: https://whatsapp.com/channel/0029VaifY548qIzv0u1AHz3i
Jobs & Internship Opportunities:
https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
Web Development: https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
Python Free Books & Projects: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Java Resources: https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
Coding Interviews: https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
SQL: https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
Power BI: https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c
Programming Free Resources: https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
Data Science Projects: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Learn Data Science & Machine Learning: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Improve your communication skills: https://whatsapp.com/channel/0029VaiaucV4NVik7Fx6HN2n
Learn Ethical Hacking and Cybersecurity: https://whatsapp.com/channel/0029VancSnGG8l5KQYOOyL1T
Donโt worry Guys your contact number will stay hidden!
ENJOY LEARNING ๐๐
โค2
Lists ๐ Tuples ๐ Dictionaries
What's the difference?
Lists are mutable.
Tuples are immutable.
Dictionaries are associative.
When should you use each?
Lists:
โถ When you want to add or remove elements
โถ When you want to sort elements
โถ When you want to slice elements
Tuples:
โถ When you want a constant object
โถ When you want to send multiple in a function
โถ When you want to return multiple from a function
Dictionaries:
โถ When you want to map keys to values
โถ When you want to loop over the keys
โถ When you want to validate if key exists
Now, pick your weapon of mass data analysis and become a Python pro!
Python Interview Q&A: https://topmate.io/coding/898340
Like for more โค๏ธ
ENJOY LEARNING ๐๐
What's the difference?
Lists are mutable.
Tuples are immutable.
Dictionaries are associative.
When should you use each?
Lists:
โถ When you want to add or remove elements
โถ When you want to sort elements
โถ When you want to slice elements
Tuples:
โถ When you want a constant object
โถ When you want to send multiple in a function
โถ When you want to return multiple from a function
Dictionaries:
โถ When you want to map keys to values
โถ When you want to loop over the keys
โถ When you want to validate if key exists
Now, pick your weapon of mass data analysis and become a Python pro!
Python Interview Q&A: https://topmate.io/coding/898340
Like for more โค๏ธ
ENJOY LEARNING ๐๐
โค5
5 Fun Python Projects for Absolute Beginners
๐นPomodoro Timer App
Build a focus timer with Tkinter and Python basics.
๐ Tutorial
๐น Voice Note-Taking App
Create a voice-to-Notion note app using Python and speech recognition.
๐ Tutorial
๐น AI Virtual Painter
Use OpenCV to draw on screen with a webcam and colored marker.
๐ Tutorial
๐น PyPhotoshop
Make a basic image editor in Python using Pillow/OpenCV.
๐ Tutorial
๐น Tower Defense Game
Build a full tower defense game using Pygame or Tkinter.
๐ Tutorial
๐นPomodoro Timer App
Build a focus timer with Tkinter and Python basics.
๐ Tutorial
๐น Voice Note-Taking App
Create a voice-to-Notion note app using Python and speech recognition.
๐ Tutorial
๐น AI Virtual Painter
Use OpenCV to draw on screen with a webcam and colored marker.
๐ Tutorial
๐น PyPhotoshop
Make a basic image editor in Python using Pillow/OpenCV.
๐ Tutorial
๐น Tower Defense Game
Build a full tower defense game using Pygame or Tkinter.
๐ Tutorial
โค9
Python Projects & Resources
Python Cheatsheet .pdf_20250725_111801_0000.pdf
Python Cheatsheet ๐๐ฅ
โค2
๐๐๐Preparing for a Data science/ Data Analytics interview can be challenging, but with the right strategy, you can enhance your chances of success. Here are some key tips to assist you in getting ready:
Review Fundamental Concepts: Ensure you have a strong grasp of statistics, probability, linear algebra, data structures, algorithms, and programming languages like Python, R, and SQL.
Refresh Machine Learning Knowledge: Familiarize yourself with various machine learning algorithms, including supervised, unsupervised, and reinforcement learning.
Practice Coding: Sharpen your coding skills by solving data science-related problems on platforms like HackerRank, LeetCode, and Kaggle.
Build a Project Portfolio: Showcase your proficiency by creating a portfolio highlighting projects covering data cleaning, wrangling, exploratory data analysis, and machine learning.
Hone Communication Skills: Practice articulating complex technical ideas in simple terms, as effective communication is vital for data scientists when interacting with non-technical stakeholders.
Research the Company: Gain insights into the company's operations, industry, and how they leverage data to solve challenges.
๐ง ๐By adhering to these guidelines, you'll be well-prepared for your upcoming data science interview. Best of luck!
Hope this helps ๐โค๏ธ:โ -โ )
๐๐Be the first one to know the latest Job openings
https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
Review Fundamental Concepts: Ensure you have a strong grasp of statistics, probability, linear algebra, data structures, algorithms, and programming languages like Python, R, and SQL.
Refresh Machine Learning Knowledge: Familiarize yourself with various machine learning algorithms, including supervised, unsupervised, and reinforcement learning.
Practice Coding: Sharpen your coding skills by solving data science-related problems on platforms like HackerRank, LeetCode, and Kaggle.
Build a Project Portfolio: Showcase your proficiency by creating a portfolio highlighting projects covering data cleaning, wrangling, exploratory data analysis, and machine learning.
Hone Communication Skills: Practice articulating complex technical ideas in simple terms, as effective communication is vital for data scientists when interacting with non-technical stakeholders.
Research the Company: Gain insights into the company's operations, industry, and how they leverage data to solve challenges.
๐ง ๐By adhering to these guidelines, you'll be well-prepared for your upcoming data science interview. Best of luck!
Hope this helps ๐โค๏ธ:โ -โ )
๐๐Be the first one to know the latest Job openings
https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
โค5
๐ Data Analyst Roadmap (2025)
Master the Skills That Top Companies Are Hiring For!
๐ 1. Learn Excel / Google Sheets
Basic formulas & formatting
VLOOKUP, Pivot Tables, Charts
Data cleaning & conditional formatting
๐ 2. Master SQL
SELECT, WHERE, ORDER BY
JOINs (INNER, LEFT, RIGHT)
GROUP BY, HAVING, LIMIT
Subqueries, CTEs, Window Functions
๐ 3. Learn Data Visualization Tools
Power BI / Tableau (choose one)
Charts, filters, slicers
Dashboards & storytelling
๐ 4. Get Comfortable with Statistics
Mean, Median, Mode, Std Dev
Probability basics
A/B Testing, Hypothesis Testing
Correlation & Regression
๐ 5. Learn Python for Data Analysis (Optional but Powerful)
Pandas & NumPy for data handling
Seaborn, Matplotlib for visuals
Jupyter Notebooks for analysis
๐ 6. Data Cleaning & Wrangling
Handle missing values
Fix data types, remove duplicates
Text processing & date formatting
๐ 7. Understand Business Metrics
KPIs: Revenue, Churn, CAC, LTV
Think like a business analyst
Deliver actionable insights
๐ 8. Communication & Storytelling
Present insights with clarity
Simplify complex data
Speak the language of stakeholders
๐ 9. Version Control (Git & GitHub)
Track your projects
Build a data portfolio
Collaborate with the community
๐ 10. Interview & Resume Preparation
Excel, SQL, case-based questions
Mock interviews + real projects
Resume with measurable achievements
โจ React โค๏ธ for more
Master the Skills That Top Companies Are Hiring For!
๐ 1. Learn Excel / Google Sheets
Basic formulas & formatting
VLOOKUP, Pivot Tables, Charts
Data cleaning & conditional formatting
๐ 2. Master SQL
SELECT, WHERE, ORDER BY
JOINs (INNER, LEFT, RIGHT)
GROUP BY, HAVING, LIMIT
Subqueries, CTEs, Window Functions
๐ 3. Learn Data Visualization Tools
Power BI / Tableau (choose one)
Charts, filters, slicers
Dashboards & storytelling
๐ 4. Get Comfortable with Statistics
Mean, Median, Mode, Std Dev
Probability basics
A/B Testing, Hypothesis Testing
Correlation & Regression
๐ 5. Learn Python for Data Analysis (Optional but Powerful)
Pandas & NumPy for data handling
Seaborn, Matplotlib for visuals
Jupyter Notebooks for analysis
๐ 6. Data Cleaning & Wrangling
Handle missing values
Fix data types, remove duplicates
Text processing & date formatting
๐ 7. Understand Business Metrics
KPIs: Revenue, Churn, CAC, LTV
Think like a business analyst
Deliver actionable insights
๐ 8. Communication & Storytelling
Present insights with clarity
Simplify complex data
Speak the language of stakeholders
๐ 9. Version Control (Git & GitHub)
Track your projects
Build a data portfolio
Collaborate with the community
๐ 10. Interview & Resume Preparation
Excel, SQL, case-based questions
Mock interviews + real projects
Resume with measurable achievements
โจ React โค๏ธ for more
โค6
Here are some of the amazing Websites to Learn Python from Beginning to Advanced. ๐๐
1. LearnPython
๐ Playlist Link
2. W3Schools
๐ Playlist Link
3. Khan Academy
๐ Playlist Link
4. FreeCodeCamp
๐ Playlist Link
5. Sololearn
๐ Playlist Link
1. LearnPython
๐ Playlist Link
2. W3Schools
๐ Playlist Link
3. Khan Academy
๐ Playlist Link
4. FreeCodeCamp
๐ Playlist Link
5. Sololearn
๐ Playlist Link
โค5
SQL Essential Concepts for Data Analyst Interviews โ
1. SQL Syntax: Understand the basic structure of SQL queries, which typically include
2. SELECT Statement: Learn how to use the
3. WHERE Clause: Use the
4. JOIN Operations: Master the different types of joinsโ
5. GROUP BY and HAVING Clauses: Use the
6. ORDER BY Clause: Sort the result set of a query by one or more columns using the
7. Aggregate Functions: Be familiar with aggregate functions like
8. DISTINCT Keyword: Use the
9. LIMIT/OFFSET Clauses: Understand how to limit the number of rows returned by a query using
10. Subqueries: Learn how to write subqueries, or nested queries, which are queries within another SQL query. Subqueries can be used in
11. UNION and UNION ALL: Know the difference between
12. IN, BETWEEN, and LIKE Operators: Use the
13. NULL Handling: Understand how to work with
14. CASE Statements: Use the
15. Indexes: Know the basics of indexing, including how indexes can improve query performance by speeding up the retrieval of rows. Understand when to create an index and the trade-offs in terms of storage and write performance.
16. Data Types: Be familiar with common SQL data types, such as
17. String Functions: Learn key string functions like
18. Date and Time Functions: Master date and time functions such as
19. INSERT, UPDATE, DELETE Statements: Understand how to use
20. Constraints: Know the role of constraints like
Here you can find SQL Interview Resources๐
https://t.iss.one/DataSimplifier
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
1. SQL Syntax: Understand the basic structure of SQL queries, which typically include
SELECT
, FROM
, WHERE
, GROUP BY
, HAVING
, and ORDER BY
clauses. Know how to write queries to retrieve data from databases.2. SELECT Statement: Learn how to use the
SELECT
statement to fetch data from one or more tables. Understand how to specify columns, use aliases, and perform simple arithmetic operations within a query.3. WHERE Clause: Use the
WHERE
clause to filter records based on specific conditions. Familiarize yourself with logical operators like =
, >
, <
, >=
, <=
, <>
, AND
, OR
, and NOT
.4. JOIN Operations: Master the different types of joinsโ
INNER JOIN
, LEFT JOIN
, RIGHT JOIN
, and FULL JOIN
โto combine rows from two or more tables based on related columns.5. GROUP BY and HAVING Clauses: Use the
GROUP BY
clause to group rows that have the same values in specified columns and aggregate data with functions like COUNT()
, SUM()
, AVG()
, MAX()
, and MIN()
. The HAVING
clause filters groups based on aggregate conditions.6. ORDER BY Clause: Sort the result set of a query by one or more columns using the
ORDER BY
clause. Understand how to sort data in ascending (ASC
) or descending (DESC
) order.7. Aggregate Functions: Be familiar with aggregate functions like
COUNT()
, SUM()
, AVG()
, MIN()
, and MAX()
to perform calculations on sets of rows, returning a single value.8. DISTINCT Keyword: Use the
DISTINCT
keyword to remove duplicate records from the result set, ensuring that only unique records are returned.9. LIMIT/OFFSET Clauses: Understand how to limit the number of rows returned by a query using
LIMIT
(or TOP
in some SQL dialects) and how to paginate results with OFFSET
.10. Subqueries: Learn how to write subqueries, or nested queries, which are queries within another SQL query. Subqueries can be used in
SELECT
, WHERE
, FROM
, and HAVING
clauses to provide more specific filtering or selection.11. UNION and UNION ALL: Know the difference between
UNION
and UNION ALL
. UNION
combines the results of two queries and removes duplicates, while UNION ALL
combines all results including duplicates.12. IN, BETWEEN, and LIKE Operators: Use the
IN
operator to match any value in a list, the BETWEEN
operator to filter within a range, and the LIKE
operator for pattern matching with wildcards (%
, _
).13. NULL Handling: Understand how to work with
NULL
values in SQL, including using IS NULL
, IS NOT NULL
, and handling nulls in calculations and joins.14. CASE Statements: Use the
CASE
statement to implement conditional logic within SQL queries, allowing you to create new fields or modify existing ones based on specific conditions.15. Indexes: Know the basics of indexing, including how indexes can improve query performance by speeding up the retrieval of rows. Understand when to create an index and the trade-offs in terms of storage and write performance.
16. Data Types: Be familiar with common SQL data types, such as
VARCHAR
, CHAR
, INT
, FLOAT
, DATE
, and BOOLEAN
, and understand how to choose the appropriate data type for a column.17. String Functions: Learn key string functions like
CONCAT()
, SUBSTRING()
, REPLACE()
, LENGTH()
, TRIM()
, and UPPER()/LOWER()
to manipulate text data within queries.18. Date and Time Functions: Master date and time functions such as
NOW()
, CURDATE()
, DATEDIFF()
, DATEADD()
, and EXTRACT()
to handle and manipulate date and time data effectively.19. INSERT, UPDATE, DELETE Statements: Understand how to use
INSERT
to add new records, UPDATE
to modify existing records, and DELETE
to remove records from a table. Be aware of the implications of these operations, particularly in maintaining data integrity.20. Constraints: Know the role of constraints like
PRIMARY KEY
, FOREIGN KEY
, UNIQUE, NOT NULL, and CHECK in maintaining data integrity and ensuring valid data entry in your database.Here you can find SQL Interview Resources๐
https://t.iss.one/DataSimplifier
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
โค5๐ฅ1