Python Projects & Resources
56.4K subscribers
779 photos
342 files
336 links
Perfect channel to learn Python Programming ๐Ÿ‡ฎ๐Ÿ‡ณ
Download Free Books & Courses to master Python Programming
- โœ… Free Courses
- โœ… Projects
- โœ… Pdfs
- โœ… Bootcamps
- โœ… Notes

Admin: @Coderfun
Download Telegram
Machine Learning Algorithms
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029VawtYcJ1iUxcMQoEuP0O
โค2๐Ÿ‘1
Step-by-Step Approach to Learn Python
โžŠ Learn the Basics โ†’ Syntax, Variables, Data Types (int, float, string, boolean)
โ†“
โž‹ Control Flow โ†’ If-Else, Loops (For, While), List Comprehensions
โ†“
โžŒ Data Structures โ†’ Lists, Tuples, Sets, Dictionaries
โ†“
โž Functions & Modules โ†’ Defining Functions, Lambda Functions, Importing Modules
โ†“
โžŽ File Handling โ†’ Reading/Writing Files, CSV, JSON
โ†“
โž Object-Oriented Programming (OOP) โ†’ Classes, Objects, Inheritance, Polymorphism
โ†“
โž Error Handling & Debugging โ†’ Try-Except, Logging, Debugging Techniques
โ†“
โž‘ Advanced Topics โ†’ Regular Expressions, Multi-threading, Decorators, Generators

Free Python Resources: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค10
๐Œ๐ข๐œ๐ซ๐จ๐ฌ๐จ๐Ÿ๐ญ ๐…๐‘๐„๐„ ๐‚๐ž๐ซ๐ญ๐ข๐Ÿ๐ข๐œ๐š๐ญ๐ข๐จ๐ง ๐‚๐จ๐ฎ๐ซ๐ฌ๐ž๐ฌ!๐Ÿš€๐Ÿ’ป

Supercharge your career with 5 FREE Microsoft certification courses designed to boost your data analytics skills!

๐„๐ง๐ซ๐จ๐ฅ๐ฅ ๐…๐จ๐ซ ๐…๐‘๐„๐„๐Ÿ‘‡ :-

https://bit.ly/3Vlixcq

- Earn certifications to showcase your skills

Donโ€™t waitโ€”start your journey to success today! โœจ
โค5
What are the common built-in data types in Python?

Python supports the below-mentioned built-in data types:

Immutable data types:

๐Ÿ‘‰Number
๐Ÿ‘‰String
๐Ÿ‘‰Tuple

Mutable data types:

๐Ÿ‘‰List
๐Ÿ‘‰Dictionary
๐Ÿ‘‰set
โค5๐Ÿ‘1
What is the lambda function in Python?

A lambda function is an anonymous function (a function that does not have a name) in Python. To define anonymous functions, we use the โ€˜lambdaโ€™ keyword instead of the โ€˜defโ€™ keyword, hence the name โ€˜lambda functionโ€™. Lambda functions can have any number of arguments but only one statement.

Example:

l = lambda x,y : x*y
print(a(5, 6))

Output:30
โค2
Math Topics every Data Scientist should know
โค3
https://topmate.io/coding/898340

If you're a job seeker, these well structured resources will help you to know and learn all the real time Python Interview questions with their exact answer. Folks who are having 0-4 years of experience have cracked the interview using this guide!

Please use the above link to avail them!๐Ÿ‘†

NOTE: -Most data aspirants hoard resources without actually opening them even once! The reason for keeping a small price for these resources is to ensure that you value the content available inside this and encourage you to make the best out of it.

Hope this helps in your job search journey... All the best!๐Ÿ‘โœŒ๏ธ
โค2๐Ÿ‘1
โŒจ๏ธ Hide secret message in image using Python
โค4
โŒจ๏ธ Grammar Correction using Python
โค2
Hi guys,

Many people charge too much to teach Excel, Power BI, SQL, Python & Tableau but my mission is to break down barriers. I have shared complete learning series to start your data analytics journey from scratch.

For those of you who are new to this channel, here are some quick links to navigate this channel easily.

Data Analyst Learning Plan ๐Ÿ‘‡
https://t.iss.one/sqlspecialist/752

Python Learning Plan ๐Ÿ‘‡
https://t.iss.one/sqlspecialist/749

Power BI Learning Plan ๐Ÿ‘‡
https://t.iss.one/sqlspecialist/745

SQL Learning Plan ๐Ÿ‘‡
https://t.iss.one/sqlspecialist/738

SQL Learning Series ๐Ÿ‘‡
https://t.iss.one/sqlspecialist/567

Excel Learning Series ๐Ÿ‘‡
https://t.iss.one/sqlspecialist/664

Power BI Learning Series ๐Ÿ‘‡
https://t.iss.one/sqlspecialist/768

Python Learning Series ๐Ÿ‘‡
https://t.iss.one/sqlspecialist/615

Tableau Essential Topics ๐Ÿ‘‡
https://t.iss.one/sqlspecialist/667

Best Data Analytics Resources ๐Ÿ‘‡
https://heylink.me/DataAnalytics

You can find more resources on Medium & Linkedin

Like for more โค๏ธ

Thanks to all who support our channel and share it with friends & loved ones. You guys are really amazing.

Hope it helps :)
โค5
Important Sorting Algorithms-

Bubble Sort: Bubble Sort is the most basic sorting algorithm, and it works by repeatedly swapping adjacent elements if they are out of order.

Merge Sort: Merge sort is a sorting technique that uses the divide and conquer strategy.

Quicksort: Quicksort is a popular sorting algorithm that performs n log n comparisons on average when sorting an array of n elements. It is a more efficient and faster sorting algorithm.

Heap Sort: Heap sort works by visualizing the array elements as a special type of complete binary tree known as a heap.

Important Searching Algorithms-

Binary Search: Binary search employs the divide and conquer strategy, in which a sorted list is divided into two halves and the item is compared to the listโ€™s middle element. If a match is found, the middle elementโ€™s location is returned.

Breadth-First Search(BFS): Breadth-first search is a graph traversal algorithm that begins at the root node and explores all neighboring nodes.

Depth-First Search(DFS): The depth-first search (DFS) algorithm begins with the first node of the graph and proceeds to go deeper and deeper until we find the goal node or node with no children.

#coding
โค1๐Ÿ‘1
Here is the list of few projects (found on kaggle). They cover Basics of Python, Advanced Statistics, Supervised Learning (Regression and Classification problems) & Data Science

Please also check the discussions and notebook submissions for different approaches and solution after you tried yourself.

1. Basic python and statistics

Pima Indians :- https://www.kaggle.com/uciml/pima-indians-diabetes-database
Cardio Goodness fit :- https://www.kaggle.com/saurav9786/cardiogoodfitness
Automobile :- https://www.kaggle.com/toramky/automobile-dataset

2. Advanced Statistics

Game of Thrones:-https://www.kaggle.com/mylesoneill/game-of-thrones
World University Ranking:-https://www.kaggle.com/mylesoneill/world-university-rankings
IMDB Movie Dataset:- https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset

3. Supervised Learning

a) Regression Problems

How much did it rain :- https://www.kaggle.com/c/how-much-did-it-rain-ii/overview
Inventory Demand:- https://www.kaggle.com/c/grupo-bimbo-inventory-demand
Property Inspection predictiion:- https://www.kaggle.com/c/liberty-mutual-group-property-inspection-prediction
Restaurant Revenue prediction:- https://www.kaggle.com/c/restaurant-revenue-prediction/data
IMDB Box office Prediction:-https://www.kaggle.com/c/tmdb-box-office-prediction/overview

b) Classification problems

Employee Access challenge :- https://www.kaggle.com/c/amazon-employee-access-challenge/overview
Titanic :- https://www.kaggle.com/c/titanic
San Francisco crime:- https://www.kaggle.com/c/sf-crime
Customer satisfcation:-https://www.kaggle.com/c/santander-customer-satisfaction
Trip type classification:- https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
Categorize cusine:- https://www.kaggle.com/c/whats-cooking

4. Some helpful Data science projects for beginners

https://www.kaggle.com/c/house-prices-advanced-regression-techniques

https://www.kaggle.com/c/digit-recognizer

https://www.kaggle.com/c/titanic

5. Intermediate Level Data science Projects

Black Friday Data : https://www.kaggle.com/sdolezel/black-friday

Human Activity Recognition Data : https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones

Trip History Data : https://www.kaggle.com/pronto/cycle-share-dataset

Million Song Data : https://www.kaggle.com/c/msdchallenge

Census Income Data : https://www.kaggle.com/c/census-income/data

Movie Lens Data : https://www.kaggle.com/grouplens/movielens-20m-dataset

Twitter Classification Data : https://www.kaggle.com/c/twitter-sentiment-analysis2

Share with credits: https://t.iss.one/sqlproject

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค5
Python Detailed Roadmap ๐Ÿš€

๐Ÿ“Œ 1. Basics
โ—ผ Data Types & Variables
โ—ผ Operators & Expressions
โ—ผ Control Flow (if, loops)

๐Ÿ“Œ 2. Functions & Modules
โ—ผ Defining Functions
โ—ผ Lambda Functions
โ—ผ Importing & Creating Modules

๐Ÿ“Œ 3. File Handling
โ—ผ Reading & Writing Files
โ—ผ Working with CSV & JSON

๐Ÿ“Œ 4. Object-Oriented Programming (OOP)
โ—ผ Classes & Objects
โ—ผ Inheritance & Polymorphism
โ—ผ Encapsulation

๐Ÿ“Œ 5. Exception Handling
โ—ผ Try-Except Blocks
โ—ผ Custom Exceptions

๐Ÿ“Œ 6. Advanced Python Concepts
โ—ผ List & Dictionary Comprehensions
โ—ผ Generators & Iterators
โ—ผ Decorators

๐Ÿ“Œ 7. Essential Libraries
โ—ผ NumPy (Arrays & Computations)
โ—ผ Pandas (Data Analysis)
โ—ผ Matplotlib & Seaborn (Visualization)

๐Ÿ“Œ 8. Web Development & APIs
โ—ผ Web Scraping (BeautifulSoup, Scrapy)
โ—ผ API Integration (Requests)
โ—ผ Flask & Django (Backend Development)

๐Ÿ“Œ 9. Automation & Scripting
โ—ผ Automating Tasks with Python
โ—ผ Working with Selenium & PyAutoGUI

๐Ÿ“Œ 10. Data Science & Machine Learning
โ—ผ Data Cleaning & Preprocessing
โ—ผ Scikit-Learn (ML Algorithms)
โ—ผ TensorFlow & PyTorch (Deep Learning)

๐Ÿ“Œ 11. Projects
โ—ผ Build Real-World Applications
โ—ผ Showcase on GitHub

๐Ÿ“Œ 12. โœ… Apply for Jobs
โ—ผ Strengthen Resume & Portfolio
โ—ผ Prepare for Technical Interviews

Like for more โค๏ธ๐Ÿ’ช
โค4
๐Ÿ”ฐ Deep Python Roadmap for Beginners ๐Ÿ

Setup & Installation ๐Ÿ–ฅโš™๏ธ
โ€ข Install Python, choose an IDE (VS Code, PyCharm)
โ€ข Set up virtual environments for project isolation ๐ŸŒŽ

Basic Syntax & Data Types ๐Ÿ“๐Ÿ”ข
โ€ข Learn variables, numbers, strings, booleans
โ€ข Understand comments, basic input/output, and simple expressions โœ๏ธ

Control Flow & Loops ๐Ÿ”„๐Ÿ”€
โ€ข Master conditionals (if, elif, else)
โ€ข Practice loops (for, while) and use control statements like break and continue ๐Ÿ‘ฎ

Functions & Scope โš™๏ธ๐ŸŽฏ

โ€ข Define functions with def and learn about parameters and return values
โ€ข Explore lambda functions, recursion, and variable scope ๐Ÿ“œ

Data Structures ๐Ÿ“Š๐Ÿ“š

โ€ข Work with lists, tuples, sets, and dictionaries
โ€ข Learn list comprehensions and built-in methods for data manipulation โš™๏ธ

Object-Oriented Programming (OOP) ๐Ÿ—๐Ÿ‘ฉโ€๐Ÿ’ป
โ€ข Understand classes, objects, and methods
โ€ข Dive into inheritance, polymorphism, and encapsulation ๐Ÿ”

React "โค๏ธ" for Part 2
โค19๐Ÿ”ฅ4
Python Cheatsheet ๐Ÿš€

1๏ธโƒฃ Variables & Data Types

x = 10 (Integer)

y = 3.14 (Float)

name = "Python" (String)

is_valid = True (Boolean)

items = [1, 2, 3] (List)

data = (1, 2, 3) (Tuple)

person = {"name": "Alice", "age": 25} (Dictionary)


2๏ธโƒฃ Operators

Arithmetic: +, -, *, /, //, %, **

Comparison: ==, !=, >, <, >=, <=

Logical: and, or, not

Membership: in, not in


3๏ธโƒฃ Control Flow

If-Else:

if age > 18:
print("Adult")
elif age == 18:
print("Just turned 18")
else:
print("Minor")

Loops:

for i in range(5):
print(i)
while x < 10:
x += 1


4๏ธโƒฃ Functions

Defining & Calling:

def greet(name):
return f"Hello, {name}"
print(greet("Alice"))

Lambda Functions: add = lambda x, y: x + y


5๏ธโƒฃ Lists & Dictionary Operations

Append: items.append(4)

Remove: items.remove(2)

List Comprehension: [x**2 for x in range(5)]

Dictionary Access: person["name"]


6๏ธโƒฃ File Handling

Read File:

with open("file.txt", "r") as f:
content = f.read()

Write File:

with open("file.txt", "w") as f:
f.write("Hello, World!")


7๏ธโƒฃ Exception Handling

try:
result = 10 / 0
except ZeroDivisionError:
print("Cannot divide by zero!")
finally:
print("Done")

8๏ธโƒฃ Modules & Packages

Importing:

import math
print(math.sqrt(25))

Creating a Module (mymodule.py):

def add(x, y):
return x + y

Usage: from mymodule import add


9๏ธโƒฃ Object-Oriented Programming (OOP)

Defining a Class:

class Person:
def init(self, name, age):
self.name = name
self.age = age
def greet(self):
return f"Hello, my name is {self.name}"

Creating an Object: p = Person("Alice", 25)


๐Ÿ”Ÿ Useful Libraries

NumPy: import numpy as np

Pandas: import pandas as pd

Matplotlib: import matplotlib.pyplot as plt

Requests: import requests

Python Resources: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค6
Python Cheatsheet ๐Ÿš€

1๏ธโƒฃ Variables & Data Types

x = 10 (Integer)

y = 3.14 (Float)

name = "Python" (String)

is_valid = True (Boolean)

items = [1, 2, 3] (List)

data = (1, 2, 3) (Tuple)

person = {"name": "Alice", "age": 25} (Dictionary)


2๏ธโƒฃ Operators

Arithmetic: +, -, *, /, //, %, **

Comparison: ==, !=, >, <, >=, <=

Logical: and, or, not

Membership: in, not in


3๏ธโƒฃ Control Flow

If-Else:

if age > 18:
print("Adult")
elif age == 18:
print("Just turned 18")
else:
print("Minor")

Loops:

for i in range(5):
print(i)
while x < 10:
x += 1


4๏ธโƒฃ Functions

Defining & Calling:

def greet(name):
return f"Hello, {name}"
print(greet("Alice"))

Lambda Functions: add = lambda x, y: x + y


5๏ธโƒฃ Lists & Dictionary Operations

Append: items.append(4)

Remove: items.remove(2)

List Comprehension: [x**2 for x in range(5)]

Dictionary Access: person["name"]


6๏ธโƒฃ File Handling

Read File:

with open("file.txt", "r") as f:
content = f.read()

Write File:

with open("file.txt", "w") as f:
f.write("Hello, World!")


7๏ธโƒฃ Exception Handling

try:
result = 10 / 0
except ZeroDivisionError:
print("Cannot divide by zero!")
finally:
print("Done")

8๏ธโƒฃ Modules & Packages

Importing:

import math
print(math.sqrt(25))

Creating a Module (mymodule.py):

def add(x, y):
return x + y

Usage: from mymodule import add


9๏ธโƒฃ Object-Oriented Programming (OOP)

Defining a Class:

class Person:
def init(self, name, age):
self.name = name
self.age = age
def greet(self):
return f"Hello, my name is {self.name}"

Creating an Object: p = Person("Alice", 25)


๐Ÿ”Ÿ Useful Libraries

NumPy: import numpy as np

Pandas: import pandas as pd

Matplotlib: import matplotlib.pyplot as plt

Requests: import requests

Python Resources: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค5๐Ÿ‘1