โค2๐1
Step-by-Step Approach to Learn Python
โ Learn the Basics โ Syntax, Variables, Data Types (int, float, string, boolean)
โ
โ Control Flow โ If-Else, Loops (For, While), List Comprehensions
โ
โ Data Structures โ Lists, Tuples, Sets, Dictionaries
โ
โ Functions & Modules โ Defining Functions, Lambda Functions, Importing Modules
โ
โ File Handling โ Reading/Writing Files, CSV, JSON
โ
โ Object-Oriented Programming (OOP) โ Classes, Objects, Inheritance, Polymorphism
โ
โ Error Handling & Debugging โ Try-Except, Logging, Debugging Techniques
โ
โ Advanced Topics โ Regular Expressions, Multi-threading, Decorators, Generators
Free Python Resources: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
ENJOY LEARNING ๐๐
โ Learn the Basics โ Syntax, Variables, Data Types (int, float, string, boolean)
โ
โ Control Flow โ If-Else, Loops (For, While), List Comprehensions
โ
โ Data Structures โ Lists, Tuples, Sets, Dictionaries
โ
โ Functions & Modules โ Defining Functions, Lambda Functions, Importing Modules
โ
โ File Handling โ Reading/Writing Files, CSV, JSON
โ
โ Object-Oriented Programming (OOP) โ Classes, Objects, Inheritance, Polymorphism
โ
โ Error Handling & Debugging โ Try-Except, Logging, Debugging Techniques
โ
โ Advanced Topics โ Regular Expressions, Multi-threading, Decorators, Generators
Free Python Resources: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
ENJOY LEARNING ๐๐
โค10
๐๐ข๐๐ซ๐จ๐ฌ๐จ๐๐ญ ๐
๐๐๐ ๐๐๐ซ๐ญ๐ข๐๐ข๐๐๐ญ๐ข๐จ๐ง ๐๐จ๐ฎ๐ซ๐ฌ๐๐ฌ!๐๐ป
Supercharge your career with 5 FREE Microsoft certification courses designed to boost your data analytics skills!
๐๐ง๐ซ๐จ๐ฅ๐ฅ ๐ ๐จ๐ซ ๐ ๐๐๐๐ :-
https://bit.ly/3Vlixcq
- Earn certifications to showcase your skills
Donโt waitโstart your journey to success today! โจ
Supercharge your career with 5 FREE Microsoft certification courses designed to boost your data analytics skills!
๐๐ง๐ซ๐จ๐ฅ๐ฅ ๐ ๐จ๐ซ ๐ ๐๐๐๐ :-
https://bit.ly/3Vlixcq
- Earn certifications to showcase your skills
Donโt waitโstart your journey to success today! โจ
โค5
What are the common built-in data types in Python?
Python supports the below-mentioned built-in data types:
Immutable data types:
๐Number
๐String
๐Tuple
Mutable data types:
๐List
๐Dictionary
๐set
Python supports the below-mentioned built-in data types:
Immutable data types:
๐Number
๐String
๐Tuple
Mutable data types:
๐List
๐Dictionary
๐set
โค5๐1
What is the lambda function in Python?
A lambda function is an anonymous function (a function that does not have a name) in Python. To define anonymous functions, we use the โlambdaโ keyword instead of the โdefโ keyword, hence the name โlambda functionโ. Lambda functions can have any number of arguments but only one statement.
Example:
A lambda function is an anonymous function (a function that does not have a name) in Python. To define anonymous functions, we use the โlambdaโ keyword instead of the โdefโ keyword, hence the name โlambda functionโ. Lambda functions can have any number of arguments but only one statement.
Example:
l = lambda x,y : x*y
print(a(5, 6))
Output:30โค2
List of Top 12 Coding Channels on WhatsApp:
1. Python Programming:
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
2. Coding Resources:
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
3. Coding Projects:
https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
4. Coding Interviews:
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
5. Java Programming:
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
6. Javascript:
https://whatsapp.com/channel/0029VavR9OxLtOjJTXrZNi32
7. Web Development:
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
8. Artificial Intelligence:
https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
9. Data Science:
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
10. Machine Learning:
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
11. SQL:
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
12. GitHub:
https://whatsapp.com/channel/0029Vawixh9IXnlk7VfY6w43
ENJOY LEARNING ๐๐
1. Python Programming:
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
2. Coding Resources:
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
3. Coding Projects:
https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
4. Coding Interviews:
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
5. Java Programming:
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
6. Javascript:
https://whatsapp.com/channel/0029VavR9OxLtOjJTXrZNi32
7. Web Development:
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
8. Artificial Intelligence:
https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
9. Data Science:
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
10. Machine Learning:
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
11. SQL:
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
12. GitHub:
https://whatsapp.com/channel/0029Vawixh9IXnlk7VfY6w43
ENJOY LEARNING ๐๐
โค6๐1
https://topmate.io/coding/898340
If you're a job seeker, these well structured resources will help you to know and learn all the real time Python Interview questions with their exact answer. Folks who are having 0-4 years of experience have cracked the interview using this guide!
Please use the above link to avail them!๐
NOTE: -Most data aspirants hoard resources without actually opening them even once! The reason for keeping a small price for these resources is to ensure that you value the content available inside this and encourage you to make the best out of it.
Hope this helps in your job search journey... All the best!๐โ๏ธ
If you're a job seeker, these well structured resources will help you to know and learn all the real time Python Interview questions with their exact answer. Folks who are having 0-4 years of experience have cracked the interview using this guide!
Please use the above link to avail them!๐
NOTE: -Most data aspirants hoard resources without actually opening them even once! The reason for keeping a small price for these resources is to ensure that you value the content available inside this and encourage you to make the best out of it.
Hope this helps in your job search journey... All the best!๐โ๏ธ
โค2๐1
Hi guys,
Many people charge too much to teach Excel, Power BI, SQL, Python & Tableau but my mission is to break down barriers. I have shared complete learning series to start your data analytics journey from scratch.
For those of you who are new to this channel, here are some quick links to navigate this channel easily.
Data Analyst Learning Plan ๐
https://t.iss.one/sqlspecialist/752
Python Learning Plan ๐
https://t.iss.one/sqlspecialist/749
Power BI Learning Plan ๐
https://t.iss.one/sqlspecialist/745
SQL Learning Plan ๐
https://t.iss.one/sqlspecialist/738
SQL Learning Series ๐
https://t.iss.one/sqlspecialist/567
Excel Learning Series ๐
https://t.iss.one/sqlspecialist/664
Power BI Learning Series ๐
https://t.iss.one/sqlspecialist/768
Python Learning Series ๐
https://t.iss.one/sqlspecialist/615
Tableau Essential Topics ๐
https://t.iss.one/sqlspecialist/667
Best Data Analytics Resources ๐
https://heylink.me/DataAnalytics
You can find more resources on Medium & Linkedin
Like for more โค๏ธ
Thanks to all who support our channel and share it with friends & loved ones. You guys are really amazing.
Hope it helps :)
Many people charge too much to teach Excel, Power BI, SQL, Python & Tableau but my mission is to break down barriers. I have shared complete learning series to start your data analytics journey from scratch.
For those of you who are new to this channel, here are some quick links to navigate this channel easily.
Data Analyst Learning Plan ๐
https://t.iss.one/sqlspecialist/752
Python Learning Plan ๐
https://t.iss.one/sqlspecialist/749
Power BI Learning Plan ๐
https://t.iss.one/sqlspecialist/745
SQL Learning Plan ๐
https://t.iss.one/sqlspecialist/738
SQL Learning Series ๐
https://t.iss.one/sqlspecialist/567
Excel Learning Series ๐
https://t.iss.one/sqlspecialist/664
Power BI Learning Series ๐
https://t.iss.one/sqlspecialist/768
Python Learning Series ๐
https://t.iss.one/sqlspecialist/615
Tableau Essential Topics ๐
https://t.iss.one/sqlspecialist/667
Best Data Analytics Resources ๐
https://heylink.me/DataAnalytics
You can find more resources on Medium & Linkedin
Like for more โค๏ธ
Thanks to all who support our channel and share it with friends & loved ones. You guys are really amazing.
Hope it helps :)
โค5
Important Sorting Algorithms-
Bubble Sort: Bubble Sort is the most basic sorting algorithm, and it works by repeatedly swapping adjacent elements if they are out of order.
Merge Sort: Merge sort is a sorting technique that uses the divide and conquer strategy.
Quicksort: Quicksort is a popular sorting algorithm that performs n log n comparisons on average when sorting an array of n elements. It is a more efficient and faster sorting algorithm.
Heap Sort: Heap sort works by visualizing the array elements as a special type of complete binary tree known as a heap.
Important Searching Algorithms-
Binary Search: Binary search employs the divide and conquer strategy, in which a sorted list is divided into two halves and the item is compared to the listโs middle element. If a match is found, the middle elementโs location is returned.
Breadth-First Search(BFS): Breadth-first search is a graph traversal algorithm that begins at the root node and explores all neighboring nodes.
Depth-First Search(DFS): The depth-first search (DFS) algorithm begins with the first node of the graph and proceeds to go deeper and deeper until we find the goal node or node with no children.
#coding
Bubble Sort: Bubble Sort is the most basic sorting algorithm, and it works by repeatedly swapping adjacent elements if they are out of order.
Merge Sort: Merge sort is a sorting technique that uses the divide and conquer strategy.
Quicksort: Quicksort is a popular sorting algorithm that performs n log n comparisons on average when sorting an array of n elements. It is a more efficient and faster sorting algorithm.
Heap Sort: Heap sort works by visualizing the array elements as a special type of complete binary tree known as a heap.
Important Searching Algorithms-
Binary Search: Binary search employs the divide and conquer strategy, in which a sorted list is divided into two halves and the item is compared to the listโs middle element. If a match is found, the middle elementโs location is returned.
Breadth-First Search(BFS): Breadth-first search is a graph traversal algorithm that begins at the root node and explores all neighboring nodes.
Depth-First Search(DFS): The depth-first search (DFS) algorithm begins with the first node of the graph and proceeds to go deeper and deeper until we find the goal node or node with no children.
#coding
โค1๐1
Here is the list of few projects (found on kaggle). They cover Basics of Python, Advanced Statistics, Supervised Learning (Regression and Classification problems) & Data Science
Please also check the discussions and notebook submissions for different approaches and solution after you tried yourself.
1. Basic python and statistics
Pima Indians :- https://www.kaggle.com/uciml/pima-indians-diabetes-database
Cardio Goodness fit :- https://www.kaggle.com/saurav9786/cardiogoodfitness
Automobile :- https://www.kaggle.com/toramky/automobile-dataset
2. Advanced Statistics
Game of Thrones:-https://www.kaggle.com/mylesoneill/game-of-thrones
World University Ranking:-https://www.kaggle.com/mylesoneill/world-university-rankings
IMDB Movie Dataset:- https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset
3. Supervised Learning
a) Regression Problems
How much did it rain :- https://www.kaggle.com/c/how-much-did-it-rain-ii/overview
Inventory Demand:- https://www.kaggle.com/c/grupo-bimbo-inventory-demand
Property Inspection predictiion:- https://www.kaggle.com/c/liberty-mutual-group-property-inspection-prediction
Restaurant Revenue prediction:- https://www.kaggle.com/c/restaurant-revenue-prediction/data
IMDB Box office Prediction:-https://www.kaggle.com/c/tmdb-box-office-prediction/overview
b) Classification problems
Employee Access challenge :- https://www.kaggle.com/c/amazon-employee-access-challenge/overview
Titanic :- https://www.kaggle.com/c/titanic
San Francisco crime:- https://www.kaggle.com/c/sf-crime
Customer satisfcation:-https://www.kaggle.com/c/santander-customer-satisfaction
Trip type classification:- https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
Categorize cusine:- https://www.kaggle.com/c/whats-cooking
4. Some helpful Data science projects for beginners
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/digit-recognizer
https://www.kaggle.com/c/titanic
5. Intermediate Level Data science Projects
Black Friday Data : https://www.kaggle.com/sdolezel/black-friday
Human Activity Recognition Data : https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones
Trip History Data : https://www.kaggle.com/pronto/cycle-share-dataset
Million Song Data : https://www.kaggle.com/c/msdchallenge
Census Income Data : https://www.kaggle.com/c/census-income/data
Movie Lens Data : https://www.kaggle.com/grouplens/movielens-20m-dataset
Twitter Classification Data : https://www.kaggle.com/c/twitter-sentiment-analysis2
Share with credits: https://t.iss.one/sqlproject
ENJOY LEARNING ๐๐
Please also check the discussions and notebook submissions for different approaches and solution after you tried yourself.
1. Basic python and statistics
Pima Indians :- https://www.kaggle.com/uciml/pima-indians-diabetes-database
Cardio Goodness fit :- https://www.kaggle.com/saurav9786/cardiogoodfitness
Automobile :- https://www.kaggle.com/toramky/automobile-dataset
2. Advanced Statistics
Game of Thrones:-https://www.kaggle.com/mylesoneill/game-of-thrones
World University Ranking:-https://www.kaggle.com/mylesoneill/world-university-rankings
IMDB Movie Dataset:- https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset
3. Supervised Learning
a) Regression Problems
How much did it rain :- https://www.kaggle.com/c/how-much-did-it-rain-ii/overview
Inventory Demand:- https://www.kaggle.com/c/grupo-bimbo-inventory-demand
Property Inspection predictiion:- https://www.kaggle.com/c/liberty-mutual-group-property-inspection-prediction
Restaurant Revenue prediction:- https://www.kaggle.com/c/restaurant-revenue-prediction/data
IMDB Box office Prediction:-https://www.kaggle.com/c/tmdb-box-office-prediction/overview
b) Classification problems
Employee Access challenge :- https://www.kaggle.com/c/amazon-employee-access-challenge/overview
Titanic :- https://www.kaggle.com/c/titanic
San Francisco crime:- https://www.kaggle.com/c/sf-crime
Customer satisfcation:-https://www.kaggle.com/c/santander-customer-satisfaction
Trip type classification:- https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
Categorize cusine:- https://www.kaggle.com/c/whats-cooking
4. Some helpful Data science projects for beginners
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/digit-recognizer
https://www.kaggle.com/c/titanic
5. Intermediate Level Data science Projects
Black Friday Data : https://www.kaggle.com/sdolezel/black-friday
Human Activity Recognition Data : https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones
Trip History Data : https://www.kaggle.com/pronto/cycle-share-dataset
Million Song Data : https://www.kaggle.com/c/msdchallenge
Census Income Data : https://www.kaggle.com/c/census-income/data
Movie Lens Data : https://www.kaggle.com/grouplens/movielens-20m-dataset
Twitter Classification Data : https://www.kaggle.com/c/twitter-sentiment-analysis2
Share with credits: https://t.iss.one/sqlproject
ENJOY LEARNING ๐๐
โค5
Python Detailed Roadmap ๐
๐ 1. Basics
โผ Data Types & Variables
โผ Operators & Expressions
โผ Control Flow (if, loops)
๐ 2. Functions & Modules
โผ Defining Functions
โผ Lambda Functions
โผ Importing & Creating Modules
๐ 3. File Handling
โผ Reading & Writing Files
โผ Working with CSV & JSON
๐ 4. Object-Oriented Programming (OOP)
โผ Classes & Objects
โผ Inheritance & Polymorphism
โผ Encapsulation
๐ 5. Exception Handling
โผ Try-Except Blocks
โผ Custom Exceptions
๐ 6. Advanced Python Concepts
โผ List & Dictionary Comprehensions
โผ Generators & Iterators
โผ Decorators
๐ 7. Essential Libraries
โผ NumPy (Arrays & Computations)
โผ Pandas (Data Analysis)
โผ Matplotlib & Seaborn (Visualization)
๐ 8. Web Development & APIs
โผ Web Scraping (BeautifulSoup, Scrapy)
โผ API Integration (Requests)
โผ Flask & Django (Backend Development)
๐ 9. Automation & Scripting
โผ Automating Tasks with Python
โผ Working with Selenium & PyAutoGUI
๐ 10. Data Science & Machine Learning
โผ Data Cleaning & Preprocessing
โผ Scikit-Learn (ML Algorithms)
โผ TensorFlow & PyTorch (Deep Learning)
๐ 11. Projects
โผ Build Real-World Applications
โผ Showcase on GitHub
๐ 12. โ Apply for Jobs
โผ Strengthen Resume & Portfolio
โผ Prepare for Technical Interviews
Like for more โค๏ธ๐ช
๐ 1. Basics
โผ Data Types & Variables
โผ Operators & Expressions
โผ Control Flow (if, loops)
๐ 2. Functions & Modules
โผ Defining Functions
โผ Lambda Functions
โผ Importing & Creating Modules
๐ 3. File Handling
โผ Reading & Writing Files
โผ Working with CSV & JSON
๐ 4. Object-Oriented Programming (OOP)
โผ Classes & Objects
โผ Inheritance & Polymorphism
โผ Encapsulation
๐ 5. Exception Handling
โผ Try-Except Blocks
โผ Custom Exceptions
๐ 6. Advanced Python Concepts
โผ List & Dictionary Comprehensions
โผ Generators & Iterators
โผ Decorators
๐ 7. Essential Libraries
โผ NumPy (Arrays & Computations)
โผ Pandas (Data Analysis)
โผ Matplotlib & Seaborn (Visualization)
๐ 8. Web Development & APIs
โผ Web Scraping (BeautifulSoup, Scrapy)
โผ API Integration (Requests)
โผ Flask & Django (Backend Development)
๐ 9. Automation & Scripting
โผ Automating Tasks with Python
โผ Working with Selenium & PyAutoGUI
๐ 10. Data Science & Machine Learning
โผ Data Cleaning & Preprocessing
โผ Scikit-Learn (ML Algorithms)
โผ TensorFlow & PyTorch (Deep Learning)
๐ 11. Projects
โผ Build Real-World Applications
โผ Showcase on GitHub
๐ 12. โ Apply for Jobs
โผ Strengthen Resume & Portfolio
โผ Prepare for Technical Interviews
Like for more โค๏ธ๐ช
โค4
๐ฐ Deep Python Roadmap for Beginners ๐
Setup & Installation ๐ฅโ๏ธ
โข Install Python, choose an IDE (VS Code, PyCharm)
โข Set up virtual environments for project isolation ๐
Basic Syntax & Data Types ๐๐ข
โข Learn variables, numbers, strings, booleans
โข Understand comments, basic input/output, and simple expressions โ๏ธ
Control Flow & Loops ๐๐
โข Master conditionals (if, elif, else)
โข Practice loops (for, while) and use control statements like break and continue ๐ฎ
Functions & Scope โ๏ธ๐ฏ
โข Define functions with def and learn about parameters and return values
โข Explore lambda functions, recursion, and variable scope ๐
Data Structures ๐๐
โข Work with lists, tuples, sets, and dictionaries
โข Learn list comprehensions and built-in methods for data manipulation โ๏ธ
Object-Oriented Programming (OOP) ๐๐ฉโ๐ป
โข Understand classes, objects, and methods
โข Dive into inheritance, polymorphism, and encapsulation ๐
React "โค๏ธ" for Part 2
Setup & Installation ๐ฅโ๏ธ
โข Install Python, choose an IDE (VS Code, PyCharm)
โข Set up virtual environments for project isolation ๐
Basic Syntax & Data Types ๐๐ข
โข Learn variables, numbers, strings, booleans
โข Understand comments, basic input/output, and simple expressions โ๏ธ
Control Flow & Loops ๐๐
โข Master conditionals (if, elif, else)
โข Practice loops (for, while) and use control statements like break and continue ๐ฎ
Functions & Scope โ๏ธ๐ฏ
โข Define functions with def and learn about parameters and return values
โข Explore lambda functions, recursion, and variable scope ๐
Data Structures ๐๐
โข Work with lists, tuples, sets, and dictionaries
โข Learn list comprehensions and built-in methods for data manipulation โ๏ธ
Object-Oriented Programming (OOP) ๐๐ฉโ๐ป
โข Understand classes, objects, and methods
โข Dive into inheritance, polymorphism, and encapsulation ๐
React "โค๏ธ" for Part 2
โค19๐ฅ4
Python Cheatsheet ๐
1๏ธโฃ Variables & Data Types
x = 10 (Integer)
y = 3.14 (Float)
name = "Python" (String)
is_valid = True (Boolean)
items = [1, 2, 3] (List)
data = (1, 2, 3) (Tuple)
person = {"name": "Alice", "age": 25} (Dictionary)
2๏ธโฃ Operators
Arithmetic: +, -, *, /, //, %, **
Comparison: ==, !=, >, <, >=, <=
Logical: and, or, not
Membership: in, not in
3๏ธโฃ Control Flow
If-Else:
if age > 18:
print("Adult")
elif age == 18:
print("Just turned 18")
else:
print("Minor")
Loops:
for i in range(5):
print(i)
while x < 10:
x += 1
4๏ธโฃ Functions
Defining & Calling:
def greet(name):
return f"Hello, {name}"
print(greet("Alice"))
Lambda Functions: add = lambda x, y: x + y
5๏ธโฃ Lists & Dictionary Operations
Append: items.append(4)
Remove: items.remove(2)
List Comprehension: [x**2 for x in range(5)]
Dictionary Access: person["name"]
6๏ธโฃ File Handling
Read File:
with open("file.txt", "r") as f:
content = f.read()
Write File:
with open("file.txt", "w") as f:
f.write("Hello, World!")
7๏ธโฃ Exception Handling
try:
result = 10 / 0
except ZeroDivisionError:
print("Cannot divide by zero!")
finally:
print("Done")
8๏ธโฃ Modules & Packages
Importing:
import math
print(math.sqrt(25))
Creating a Module (mymodule.py):
def add(x, y):
return x + y
Usage: from mymodule import add
9๏ธโฃ Object-Oriented Programming (OOP)
Defining a Class:
class Person:
def init(self, name, age):
self.name = name
self.age = age
def greet(self):
return f"Hello, my name is {self.name}"
Creating an Object: p = Person("Alice", 25)
๐ Useful Libraries
NumPy: import numpy as np
Pandas: import pandas as pd
Matplotlib: import matplotlib.pyplot as plt
Requests: import requests
Python Resources: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
ENJOY LEARNING ๐๐
1๏ธโฃ Variables & Data Types
x = 10 (Integer)
y = 3.14 (Float)
name = "Python" (String)
is_valid = True (Boolean)
items = [1, 2, 3] (List)
data = (1, 2, 3) (Tuple)
person = {"name": "Alice", "age": 25} (Dictionary)
2๏ธโฃ Operators
Arithmetic: +, -, *, /, //, %, **
Comparison: ==, !=, >, <, >=, <=
Logical: and, or, not
Membership: in, not in
3๏ธโฃ Control Flow
If-Else:
if age > 18:
print("Adult")
elif age == 18:
print("Just turned 18")
else:
print("Minor")
Loops:
for i in range(5):
print(i)
while x < 10:
x += 1
4๏ธโฃ Functions
Defining & Calling:
def greet(name):
return f"Hello, {name}"
print(greet("Alice"))
Lambda Functions: add = lambda x, y: x + y
5๏ธโฃ Lists & Dictionary Operations
Append: items.append(4)
Remove: items.remove(2)
List Comprehension: [x**2 for x in range(5)]
Dictionary Access: person["name"]
6๏ธโฃ File Handling
Read File:
with open("file.txt", "r") as f:
content = f.read()
Write File:
with open("file.txt", "w") as f:
f.write("Hello, World!")
7๏ธโฃ Exception Handling
try:
result = 10 / 0
except ZeroDivisionError:
print("Cannot divide by zero!")
finally:
print("Done")
8๏ธโฃ Modules & Packages
Importing:
import math
print(math.sqrt(25))
Creating a Module (mymodule.py):
def add(x, y):
return x + y
Usage: from mymodule import add
9๏ธโฃ Object-Oriented Programming (OOP)
Defining a Class:
class Person:
def init(self, name, age):
self.name = name
self.age = age
def greet(self):
return f"Hello, my name is {self.name}"
Creating an Object: p = Person("Alice", 25)
๐ Useful Libraries
NumPy: import numpy as np
Pandas: import pandas as pd
Matplotlib: import matplotlib.pyplot as plt
Requests: import requests
Python Resources: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
ENJOY LEARNING ๐๐
โค6
Python Cheatsheet ๐
1๏ธโฃ Variables & Data Types
x = 10 (Integer)
y = 3.14 (Float)
name = "Python" (String)
is_valid = True (Boolean)
items = [1, 2, 3] (List)
data = (1, 2, 3) (Tuple)
person = {"name": "Alice", "age": 25} (Dictionary)
2๏ธโฃ Operators
Arithmetic: +, -, *, /, //, %, **
Comparison: ==, !=, >, <, >=, <=
Logical: and, or, not
Membership: in, not in
3๏ธโฃ Control Flow
If-Else:
if age > 18:
print("Adult")
elif age == 18:
print("Just turned 18")
else:
print("Minor")
Loops:
for i in range(5):
print(i)
while x < 10:
x += 1
4๏ธโฃ Functions
Defining & Calling:
def greet(name):
return f"Hello, {name}"
print(greet("Alice"))
Lambda Functions: add = lambda x, y: x + y
5๏ธโฃ Lists & Dictionary Operations
Append: items.append(4)
Remove: items.remove(2)
List Comprehension: [x**2 for x in range(5)]
Dictionary Access: person["name"]
6๏ธโฃ File Handling
Read File:
with open("file.txt", "r") as f:
content = f.read()
Write File:
with open("file.txt", "w") as f:
f.write("Hello, World!")
7๏ธโฃ Exception Handling
try:
result = 10 / 0
except ZeroDivisionError:
print("Cannot divide by zero!")
finally:
print("Done")
8๏ธโฃ Modules & Packages
Importing:
import math
print(math.sqrt(25))
Creating a Module (mymodule.py):
def add(x, y):
return x + y
Usage: from mymodule import add
9๏ธโฃ Object-Oriented Programming (OOP)
Defining a Class:
class Person:
def init(self, name, age):
self.name = name
self.age = age
def greet(self):
return f"Hello, my name is {self.name}"
Creating an Object: p = Person("Alice", 25)
๐ Useful Libraries
NumPy: import numpy as np
Pandas: import pandas as pd
Matplotlib: import matplotlib.pyplot as plt
Requests: import requests
Python Resources: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
ENJOY LEARNING ๐๐
1๏ธโฃ Variables & Data Types
x = 10 (Integer)
y = 3.14 (Float)
name = "Python" (String)
is_valid = True (Boolean)
items = [1, 2, 3] (List)
data = (1, 2, 3) (Tuple)
person = {"name": "Alice", "age": 25} (Dictionary)
2๏ธโฃ Operators
Arithmetic: +, -, *, /, //, %, **
Comparison: ==, !=, >, <, >=, <=
Logical: and, or, not
Membership: in, not in
3๏ธโฃ Control Flow
If-Else:
if age > 18:
print("Adult")
elif age == 18:
print("Just turned 18")
else:
print("Minor")
Loops:
for i in range(5):
print(i)
while x < 10:
x += 1
4๏ธโฃ Functions
Defining & Calling:
def greet(name):
return f"Hello, {name}"
print(greet("Alice"))
Lambda Functions: add = lambda x, y: x + y
5๏ธโฃ Lists & Dictionary Operations
Append: items.append(4)
Remove: items.remove(2)
List Comprehension: [x**2 for x in range(5)]
Dictionary Access: person["name"]
6๏ธโฃ File Handling
Read File:
with open("file.txt", "r") as f:
content = f.read()
Write File:
with open("file.txt", "w") as f:
f.write("Hello, World!")
7๏ธโฃ Exception Handling
try:
result = 10 / 0
except ZeroDivisionError:
print("Cannot divide by zero!")
finally:
print("Done")
8๏ธโฃ Modules & Packages
Importing:
import math
print(math.sqrt(25))
Creating a Module (mymodule.py):
def add(x, y):
return x + y
Usage: from mymodule import add
9๏ธโฃ Object-Oriented Programming (OOP)
Defining a Class:
class Person:
def init(self, name, age):
self.name = name
self.age = age
def greet(self):
return f"Hello, my name is {self.name}"
Creating an Object: p = Person("Alice", 25)
๐ Useful Libraries
NumPy: import numpy as np
Pandas: import pandas as pd
Matplotlib: import matplotlib.pyplot as plt
Requests: import requests
Python Resources: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
ENJOY LEARNING ๐๐
โค5๐1