Step-by-Step Approach to Learn Python
โ Learn the Basics โ Syntax, Variables, Data Types (int, float, string, boolean)
โ
โ Control Flow โ If-Else, Loops (For, While), List Comprehensions
โ
โ Data Structures โ Lists, Tuples, Sets, Dictionaries
โ
โ Functions & Modules โ Defining Functions, Lambda Functions, Importing Modules
โ
โ File Handling โ Reading/Writing Files, CSV, JSON
โ
โ Object-Oriented Programming (OOP) โ Classes, Objects, Inheritance, Polymorphism
โ
โ Error Handling & Debugging โ Try-Except, Logging, Debugging Techniques
โ
โ Advanced Topics โ Regular Expressions, Multi-threading, Decorators, Generators
Free Python Resources: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
ENJOY LEARNING ๐๐
โ Learn the Basics โ Syntax, Variables, Data Types (int, float, string, boolean)
โ
โ Control Flow โ If-Else, Loops (For, While), List Comprehensions
โ
โ Data Structures โ Lists, Tuples, Sets, Dictionaries
โ
โ Functions & Modules โ Defining Functions, Lambda Functions, Importing Modules
โ
โ File Handling โ Reading/Writing Files, CSV, JSON
โ
โ Object-Oriented Programming (OOP) โ Classes, Objects, Inheritance, Polymorphism
โ
โ Error Handling & Debugging โ Try-Except, Logging, Debugging Techniques
โ
โ Advanced Topics โ Regular Expressions, Multi-threading, Decorators, Generators
Free Python Resources: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
ENJOY LEARNING ๐๐
โค10
What are the common built-in data types in Python?
Python supports the below-mentioned built-in data types:
Immutable data types:
๐Number
๐String
๐Tuple
Mutable data types:
๐List
๐Dictionary
๐set
Python supports the below-mentioned built-in data types:
Immutable data types:
๐Number
๐String
๐Tuple
Mutable data types:
๐List
๐Dictionary
๐set
โค5๐1
What is the lambda function in Python?
A lambda function is an anonymous function (a function that does not have a name) in Python. To define anonymous functions, we use the โlambdaโ keyword instead of the โdefโ keyword, hence the name โlambda functionโ. Lambda functions can have any number of arguments but only one statement.
Example:
A lambda function is an anonymous function (a function that does not have a name) in Python. To define anonymous functions, we use the โlambdaโ keyword instead of the โdefโ keyword, hence the name โlambda functionโ. Lambda functions can have any number of arguments but only one statement.
Example:
l = lambda x,y : x*y
print(a(5, 6))
Output:30โค2
List of Top 12 Coding Channels on WhatsApp:
1. Python Programming:
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
2. Coding Resources:
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
3. Coding Projects:
https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
4. Coding Interviews:
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
5. Java Programming:
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
6. Javascript:
https://whatsapp.com/channel/0029VavR9OxLtOjJTXrZNi32
7. Web Development:
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
8. Artificial Intelligence:
https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
9. Data Science:
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
10. Machine Learning:
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
11. SQL:
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
12. GitHub:
https://whatsapp.com/channel/0029Vawixh9IXnlk7VfY6w43
ENJOY LEARNING ๐๐
1. Python Programming:
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
2. Coding Resources:
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
3. Coding Projects:
https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
4. Coding Interviews:
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
5. Java Programming:
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
6. Javascript:
https://whatsapp.com/channel/0029VavR9OxLtOjJTXrZNi32
7. Web Development:
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
8. Artificial Intelligence:
https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
9. Data Science:
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
10. Machine Learning:
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
11. SQL:
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
12. GitHub:
https://whatsapp.com/channel/0029Vawixh9IXnlk7VfY6w43
ENJOY LEARNING ๐๐
โค6๐1
https://topmate.io/coding/898340
If you're a job seeker, these well structured resources will help you to know and learn all the real time Python Interview questions with their exact answer. Folks who are having 0-4 years of experience have cracked the interview using this guide!
Please use the above link to avail them!๐
NOTE: -Most data aspirants hoard resources without actually opening them even once! The reason for keeping a small price for these resources is to ensure that you value the content available inside this and encourage you to make the best out of it.
Hope this helps in your job search journey... All the best!๐โ๏ธ
If you're a job seeker, these well structured resources will help you to know and learn all the real time Python Interview questions with their exact answer. Folks who are having 0-4 years of experience have cracked the interview using this guide!
Please use the above link to avail them!๐
NOTE: -Most data aspirants hoard resources without actually opening them even once! The reason for keeping a small price for these resources is to ensure that you value the content available inside this and encourage you to make the best out of it.
Hope this helps in your job search journey... All the best!๐โ๏ธ
โค2๐1
Hi guys,
Many people charge too much to teach Excel, Power BI, SQL, Python & Tableau but my mission is to break down barriers. I have shared complete learning series to start your data analytics journey from scratch.
For those of you who are new to this channel, here are some quick links to navigate this channel easily.
Data Analyst Learning Plan ๐
https://t.iss.one/sqlspecialist/752
Python Learning Plan ๐
https://t.iss.one/sqlspecialist/749
Power BI Learning Plan ๐
https://t.iss.one/sqlspecialist/745
SQL Learning Plan ๐
https://t.iss.one/sqlspecialist/738
SQL Learning Series ๐
https://t.iss.one/sqlspecialist/567
Excel Learning Series ๐
https://t.iss.one/sqlspecialist/664
Power BI Learning Series ๐
https://t.iss.one/sqlspecialist/768
Python Learning Series ๐
https://t.iss.one/sqlspecialist/615
Tableau Essential Topics ๐
https://t.iss.one/sqlspecialist/667
Best Data Analytics Resources ๐
https://heylink.me/DataAnalytics
You can find more resources on Medium & Linkedin
Like for more โค๏ธ
Thanks to all who support our channel and share it with friends & loved ones. You guys are really amazing.
Hope it helps :)
Many people charge too much to teach Excel, Power BI, SQL, Python & Tableau but my mission is to break down barriers. I have shared complete learning series to start your data analytics journey from scratch.
For those of you who are new to this channel, here are some quick links to navigate this channel easily.
Data Analyst Learning Plan ๐
https://t.iss.one/sqlspecialist/752
Python Learning Plan ๐
https://t.iss.one/sqlspecialist/749
Power BI Learning Plan ๐
https://t.iss.one/sqlspecialist/745
SQL Learning Plan ๐
https://t.iss.one/sqlspecialist/738
SQL Learning Series ๐
https://t.iss.one/sqlspecialist/567
Excel Learning Series ๐
https://t.iss.one/sqlspecialist/664
Power BI Learning Series ๐
https://t.iss.one/sqlspecialist/768
Python Learning Series ๐
https://t.iss.one/sqlspecialist/615
Tableau Essential Topics ๐
https://t.iss.one/sqlspecialist/667
Best Data Analytics Resources ๐
https://heylink.me/DataAnalytics
You can find more resources on Medium & Linkedin
Like for more โค๏ธ
Thanks to all who support our channel and share it with friends & loved ones. You guys are really amazing.
Hope it helps :)
โค5
Important Sorting Algorithms-
Bubble Sort: Bubble Sort is the most basic sorting algorithm, and it works by repeatedly swapping adjacent elements if they are out of order.
Merge Sort: Merge sort is a sorting technique that uses the divide and conquer strategy.
Quicksort: Quicksort is a popular sorting algorithm that performs n log n comparisons on average when sorting an array of n elements. It is a more efficient and faster sorting algorithm.
Heap Sort: Heap sort works by visualizing the array elements as a special type of complete binary tree known as a heap.
Important Searching Algorithms-
Binary Search: Binary search employs the divide and conquer strategy, in which a sorted list is divided into two halves and the item is compared to the listโs middle element. If a match is found, the middle elementโs location is returned.
Breadth-First Search(BFS): Breadth-first search is a graph traversal algorithm that begins at the root node and explores all neighboring nodes.
Depth-First Search(DFS): The depth-first search (DFS) algorithm begins with the first node of the graph and proceeds to go deeper and deeper until we find the goal node or node with no children.
#coding
Bubble Sort: Bubble Sort is the most basic sorting algorithm, and it works by repeatedly swapping adjacent elements if they are out of order.
Merge Sort: Merge sort is a sorting technique that uses the divide and conquer strategy.
Quicksort: Quicksort is a popular sorting algorithm that performs n log n comparisons on average when sorting an array of n elements. It is a more efficient and faster sorting algorithm.
Heap Sort: Heap sort works by visualizing the array elements as a special type of complete binary tree known as a heap.
Important Searching Algorithms-
Binary Search: Binary search employs the divide and conquer strategy, in which a sorted list is divided into two halves and the item is compared to the listโs middle element. If a match is found, the middle elementโs location is returned.
Breadth-First Search(BFS): Breadth-first search is a graph traversal algorithm that begins at the root node and explores all neighboring nodes.
Depth-First Search(DFS): The depth-first search (DFS) algorithm begins with the first node of the graph and proceeds to go deeper and deeper until we find the goal node or node with no children.
#coding
โค1๐1
Here is the list of few projects (found on kaggle). They cover Basics of Python, Advanced Statistics, Supervised Learning (Regression and Classification problems) & Data Science
Please also check the discussions and notebook submissions for different approaches and solution after you tried yourself.
1. Basic python and statistics
Pima Indians :- https://www.kaggle.com/uciml/pima-indians-diabetes-database
Cardio Goodness fit :- https://www.kaggle.com/saurav9786/cardiogoodfitness
Automobile :- https://www.kaggle.com/toramky/automobile-dataset
2. Advanced Statistics
Game of Thrones:-https://www.kaggle.com/mylesoneill/game-of-thrones
World University Ranking:-https://www.kaggle.com/mylesoneill/world-university-rankings
IMDB Movie Dataset:- https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset
3. Supervised Learning
a) Regression Problems
How much did it rain :- https://www.kaggle.com/c/how-much-did-it-rain-ii/overview
Inventory Demand:- https://www.kaggle.com/c/grupo-bimbo-inventory-demand
Property Inspection predictiion:- https://www.kaggle.com/c/liberty-mutual-group-property-inspection-prediction
Restaurant Revenue prediction:- https://www.kaggle.com/c/restaurant-revenue-prediction/data
IMDB Box office Prediction:-https://www.kaggle.com/c/tmdb-box-office-prediction/overview
b) Classification problems
Employee Access challenge :- https://www.kaggle.com/c/amazon-employee-access-challenge/overview
Titanic :- https://www.kaggle.com/c/titanic
San Francisco crime:- https://www.kaggle.com/c/sf-crime
Customer satisfcation:-https://www.kaggle.com/c/santander-customer-satisfaction
Trip type classification:- https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
Categorize cusine:- https://www.kaggle.com/c/whats-cooking
4. Some helpful Data science projects for beginners
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/digit-recognizer
https://www.kaggle.com/c/titanic
5. Intermediate Level Data science Projects
Black Friday Data : https://www.kaggle.com/sdolezel/black-friday
Human Activity Recognition Data : https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones
Trip History Data : https://www.kaggle.com/pronto/cycle-share-dataset
Million Song Data : https://www.kaggle.com/c/msdchallenge
Census Income Data : https://www.kaggle.com/c/census-income/data
Movie Lens Data : https://www.kaggle.com/grouplens/movielens-20m-dataset
Twitter Classification Data : https://www.kaggle.com/c/twitter-sentiment-analysis2
Share with credits: https://t.iss.one/sqlproject
ENJOY LEARNING ๐๐
Please also check the discussions and notebook submissions for different approaches and solution after you tried yourself.
1. Basic python and statistics
Pima Indians :- https://www.kaggle.com/uciml/pima-indians-diabetes-database
Cardio Goodness fit :- https://www.kaggle.com/saurav9786/cardiogoodfitness
Automobile :- https://www.kaggle.com/toramky/automobile-dataset
2. Advanced Statistics
Game of Thrones:-https://www.kaggle.com/mylesoneill/game-of-thrones
World University Ranking:-https://www.kaggle.com/mylesoneill/world-university-rankings
IMDB Movie Dataset:- https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset
3. Supervised Learning
a) Regression Problems
How much did it rain :- https://www.kaggle.com/c/how-much-did-it-rain-ii/overview
Inventory Demand:- https://www.kaggle.com/c/grupo-bimbo-inventory-demand
Property Inspection predictiion:- https://www.kaggle.com/c/liberty-mutual-group-property-inspection-prediction
Restaurant Revenue prediction:- https://www.kaggle.com/c/restaurant-revenue-prediction/data
IMDB Box office Prediction:-https://www.kaggle.com/c/tmdb-box-office-prediction/overview
b) Classification problems
Employee Access challenge :- https://www.kaggle.com/c/amazon-employee-access-challenge/overview
Titanic :- https://www.kaggle.com/c/titanic
San Francisco crime:- https://www.kaggle.com/c/sf-crime
Customer satisfcation:-https://www.kaggle.com/c/santander-customer-satisfaction
Trip type classification:- https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
Categorize cusine:- https://www.kaggle.com/c/whats-cooking
4. Some helpful Data science projects for beginners
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/digit-recognizer
https://www.kaggle.com/c/titanic
5. Intermediate Level Data science Projects
Black Friday Data : https://www.kaggle.com/sdolezel/black-friday
Human Activity Recognition Data : https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones
Trip History Data : https://www.kaggle.com/pronto/cycle-share-dataset
Million Song Data : https://www.kaggle.com/c/msdchallenge
Census Income Data : https://www.kaggle.com/c/census-income/data
Movie Lens Data : https://www.kaggle.com/grouplens/movielens-20m-dataset
Twitter Classification Data : https://www.kaggle.com/c/twitter-sentiment-analysis2
Share with credits: https://t.iss.one/sqlproject
ENJOY LEARNING ๐๐
โค5