Call for papers on AI to AI Journey* conference journal has started!
Prize for the best scientific paper - 1 million roubles!
Selected papers will be published in the scientific journal Doklady Mathematics.
📖 The journal:
• Indexed in the largest bibliographic databases of scientific citations
• Accessible to an international audience and published in the world’s digital libraries
Submit your article by August 20 and get the opportunity not only to publish your research the scientific journal, but also to present it at the AI Journey conference.
Prize for the best article - 1 million roubles!
More detailed information can be found in the Selection Rules -> AI Journey
*AI Journey - a major online conference in the field of AI technologies
Prize for the best scientific paper - 1 million roubles!
Selected papers will be published in the scientific journal Doklady Mathematics.
📖 The journal:
• Indexed in the largest bibliographic databases of scientific citations
• Accessible to an international audience and published in the world’s digital libraries
Submit your article by August 20 and get the opportunity not only to publish your research the scientific journal, but also to present it at the AI Journey conference.
Prize for the best article - 1 million roubles!
More detailed information can be found in the Selection Rules -> AI Journey
*AI Journey - a major online conference in the field of AI technologies
❤5
Most Important Mathematical Equations in Data Science!
1️⃣ Gradient Descent: Optimization algorithm minimizing the cost function.
2️⃣ Normal Distribution: Distribution characterized by mean μ\muμ and variance σ2\sigma^2σ2.
3️⃣ Sigmoid Function: Activation function mapping real values to 0-1 range.
4️⃣ Linear Regression: Predictive model of linear input-output relationships.
5️⃣ Cosine Similarity: Metric for vector similarity based on angle cosine.
6️⃣ Naive Bayes: Classifier using Bayes’ Theorem and feature independence.
7️⃣ K-Means: Clustering minimizing distances to cluster centroids.
8️⃣ Log Loss: Performance measure for probability output models.
9️⃣ Mean Squared Error (MSE): Average of squared prediction errors.
🔟 MSE (Bias-Variance Decomposition): Explains MSE through bias and variance.
1️⃣1️⃣ MSE + L2 Regularization: Adds penalty to prevent overfitting.
1️⃣2️⃣ Entropy: Uncertainty measure used in decision trees.
1️⃣3️⃣ Softmax: Converts logits to probabilities for classification.
1️⃣4️⃣ Ordinary Least Squares (OLS): Estimates regression parameters by minimizing residuals.
1️⃣5️⃣ Correlation: Measures linear relationships between variables.
1️⃣6️⃣ Z-score: Standardizes value based on standard deviations from mean.
1️⃣7️⃣ Maximum Likelihood Estimation (MLE): Estimates parameters maximizing data likelihood.
1️⃣8️⃣ Eigenvectors and Eigenvalues: Characterize linear transformations in matrices.
1️⃣9️⃣ R-squared (R²): Proportion of variance explained by regression.
2️⃣0️⃣ F1 Score: Harmonic mean of precision and recall.
2️⃣1️⃣ Expected Value: Weighted average of all possible values.
Like if you need similar content 😄👍
1️⃣ Gradient Descent: Optimization algorithm minimizing the cost function.
2️⃣ Normal Distribution: Distribution characterized by mean μ\muμ and variance σ2\sigma^2σ2.
3️⃣ Sigmoid Function: Activation function mapping real values to 0-1 range.
4️⃣ Linear Regression: Predictive model of linear input-output relationships.
5️⃣ Cosine Similarity: Metric for vector similarity based on angle cosine.
6️⃣ Naive Bayes: Classifier using Bayes’ Theorem and feature independence.
7️⃣ K-Means: Clustering minimizing distances to cluster centroids.
8️⃣ Log Loss: Performance measure for probability output models.
9️⃣ Mean Squared Error (MSE): Average of squared prediction errors.
🔟 MSE (Bias-Variance Decomposition): Explains MSE through bias and variance.
1️⃣1️⃣ MSE + L2 Regularization: Adds penalty to prevent overfitting.
1️⃣2️⃣ Entropy: Uncertainty measure used in decision trees.
1️⃣3️⃣ Softmax: Converts logits to probabilities for classification.
1️⃣4️⃣ Ordinary Least Squares (OLS): Estimates regression parameters by minimizing residuals.
1️⃣5️⃣ Correlation: Measures linear relationships between variables.
1️⃣6️⃣ Z-score: Standardizes value based on standard deviations from mean.
1️⃣7️⃣ Maximum Likelihood Estimation (MLE): Estimates parameters maximizing data likelihood.
1️⃣8️⃣ Eigenvectors and Eigenvalues: Characterize linear transformations in matrices.
1️⃣9️⃣ R-squared (R²): Proportion of variance explained by regression.
2️⃣0️⃣ F1 Score: Harmonic mean of precision and recall.
2️⃣1️⃣ Expected Value: Weighted average of all possible values.
Like if you need similar content 😄👍
❤4👍2
Python Interview Questions:
Ready to test your Python skills? Let’s get started! 💻
1. How to check if a string is a palindrome?
2. How to find the factorial of a number using recursion?
3. How to merge two dictionaries in Python?
4. How to find the intersection of two lists?
5. How to generate a list of even numbers from 1 to 100?
6. How to find the longest word in a sentence?
7. How to count the frequency of elements in a list?
8. How to remove duplicates from a list while maintaining the order?
9. How to reverse a linked list in Python?
10. How to implement a simple binary search algorithm?
Here you can find essential Python Interview Resources👇
https://t.iss.one/DataSimplifier
Like for more resources like this 👍 ♥️
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
Ready to test your Python skills? Let’s get started! 💻
1. How to check if a string is a palindrome?
def is_palindrome(s):
return s == s[::-1]
print(is_palindrome("madam")) # True
print(is_palindrome("hello")) # False
2. How to find the factorial of a number using recursion?
def factorial(n):
if n == 0 or n == 1:
return 1
return n * factorial(n - 1)
print(factorial(5)) # 120
3. How to merge two dictionaries in Python?
dict1 = {'a': 1, 'b': 2}
dict2 = {'c': 3, 'd': 4}
# Method 1 (Python 3.5+)
merged_dict = {**dict1, **dict2}
# Method 2 (Python 3.9+)
merged_dict = dict1 | dict2
print(merged_dict)
4. How to find the intersection of two lists?
list1 = [1, 2, 3, 4]
list2 = [3, 4, 5, 6]
intersection = list(set(list1) & set(list2))
print(intersection) # [3, 4]
5. How to generate a list of even numbers from 1 to 100?
even_numbers = [i for i in range(1, 101) if i % 2 == 0]
print(even_numbers)
6. How to find the longest word in a sentence?
def longest_word(sentence):
words = sentence.split()
return max(words, key=len)
print(longest_word("Python is a powerful language")) # "powerful"
7. How to count the frequency of elements in a list?
from collections import Counter
my_list = [1, 2, 2, 3, 3, 3, 4]
frequency = Counter(my_list)
print(frequency) # Counter({3: 3, 2: 2, 1: 1, 4: 1})
8. How to remove duplicates from a list while maintaining the order?
def remove_duplicates(lst):
return list(dict.fromkeys(lst))
my_list = [1, 2, 2, 3, 4, 4, 5]
print(remove_duplicates(my_list)) # [1, 2, 3, 4, 5]
9. How to reverse a linked list in Python?
class Node:
def __init__(self, data):
self.data = data
self.next = None
def reverse_linked_list(head):
prev = None
current = head
while current:
next_node = current.next
current.next = prev
prev = current
current = next_node
return prev
# Create linked list: 1 -> 2 -> 3
head = Node(1)
head.next = Node(2)
head.next.next = Node(3)
# Reverse and print the list
reversed_head = reverse_linked_list(head)
while reversed_head:
print(reversed_head.data, end=" -> ")
reversed_head = reversed_head.next
10. How to implement a simple binary search algorithm?
def binary_search(arr, target):
low, high = 0, len(arr) - 1
while low <= high:
mid = (low + high) // 2
if arr[mid] == target:
return mid
elif arr[mid] < target:
low = mid + 1
else:
high = mid - 1
return -1
print(binary_search([1, 2, 3, 4, 5, 6, 7], 4)) # 3
Here you can find essential Python Interview Resources👇
https://t.iss.one/DataSimplifier
Like for more resources like this 👍 ♥️
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
❤10
Data Science Learning Plan
Step 1: Mathematics for Data Science (Statistics, Probability, Linear Algebra)
Step 2: Python for Data Science (Basics and Libraries)
Step 3: Data Manipulation and Analysis (Pandas, NumPy)
Step 4: Data Visualization (Matplotlib, Seaborn, Plotly)
Step 5: Databases and SQL for Data Retrieval
Step 6: Introduction to Machine Learning (Supervised and Unsupervised Learning)
Step 7: Data Cleaning and Preprocessing
Step 8: Feature Engineering and Selection
Step 9: Model Evaluation and Tuning
Step 10: Deep Learning (Neural Networks, TensorFlow, Keras)
Step 11: Working with Big Data (Hadoop, Spark)
Step 12: Building Data Science Projects and Portfolio
Step 1: Mathematics for Data Science (Statistics, Probability, Linear Algebra)
Step 2: Python for Data Science (Basics and Libraries)
Step 3: Data Manipulation and Analysis (Pandas, NumPy)
Step 4: Data Visualization (Matplotlib, Seaborn, Plotly)
Step 5: Databases and SQL for Data Retrieval
Step 6: Introduction to Machine Learning (Supervised and Unsupervised Learning)
Step 7: Data Cleaning and Preprocessing
Step 8: Feature Engineering and Selection
Step 9: Model Evaluation and Tuning
Step 10: Deep Learning (Neural Networks, TensorFlow, Keras)
Step 11: Working with Big Data (Hadoop, Spark)
Step 12: Building Data Science Projects and Portfolio
❤4
List of Top 12 Coding Channels on WhatsApp:
1. Python Programming:
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
2. Coding Resources:
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
3. Coding Projects:
https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
4. Coding Interviews:
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
5. Java Programming:
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
6. Javascript:
https://whatsapp.com/channel/0029VavR9OxLtOjJTXrZNi32
7. Web Development:
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
8. Artificial Intelligence:
https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
9. Data Science:
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
10. Machine Learning:
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
11. SQL:
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
12. GitHub:
https://whatsapp.com/channel/0029Vawixh9IXnlk7VfY6w43
ENJOY LEARNING 👍👍
1. Python Programming:
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
2. Coding Resources:
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
3. Coding Projects:
https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
4. Coding Interviews:
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
5. Java Programming:
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
6. Javascript:
https://whatsapp.com/channel/0029VavR9OxLtOjJTXrZNi32
7. Web Development:
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
8. Artificial Intelligence:
https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
9. Data Science:
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
10. Machine Learning:
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
11. SQL:
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
12. GitHub:
https://whatsapp.com/channel/0029Vawixh9IXnlk7VfY6w43
ENJOY LEARNING 👍👍
❤5
Top 10 important data science concepts
1. Data Cleaning: Data cleaning is the process of identifying and correcting or removing errors, inconsistencies, and inaccuracies in a dataset. It is a crucial step in the data science pipeline as it ensures the quality and reliability of the data.
2. Exploratory Data Analysis (EDA): EDA is the process of analyzing and visualizing data to gain insights and understand the underlying patterns and relationships. It involves techniques such as summary statistics, data visualization, and correlation analysis.
3. Feature Engineering: Feature engineering is the process of creating new features or transforming existing features in a dataset to improve the performance of machine learning models. It involves techniques such as encoding categorical variables, scaling numerical variables, and creating interaction terms.
4. Machine Learning Algorithms: Machine learning algorithms are mathematical models that learn patterns and relationships from data to make predictions or decisions. Some important machine learning algorithms include linear regression, logistic regression, decision trees, random forests, support vector machines, and neural networks.
5. Model Evaluation and Validation: Model evaluation and validation involve assessing the performance of machine learning models on unseen data. It includes techniques such as cross-validation, confusion matrix, precision, recall, F1 score, and ROC curve analysis.
6. Feature Selection: Feature selection is the process of selecting the most relevant features from a dataset to improve model performance and reduce overfitting. It involves techniques such as correlation analysis, backward elimination, forward selection, and regularization methods.
7. Dimensionality Reduction: Dimensionality reduction techniques are used to reduce the number of features in a dataset while preserving the most important information. Principal Component Analysis (PCA) and t-SNE (t-Distributed Stochastic Neighbor Embedding) are common dimensionality reduction techniques.
8. Model Optimization: Model optimization involves fine-tuning the parameters and hyperparameters of machine learning models to achieve the best performance. Techniques such as grid search, random search, and Bayesian optimization are used for model optimization.
9. Data Visualization: Data visualization is the graphical representation of data to communicate insights and patterns effectively. It involves using charts, graphs, and plots to present data in a visually appealing and understandable manner.
10. Big Data Analytics: Big data analytics refers to the process of analyzing large and complex datasets that cannot be processed using traditional data processing techniques. It involves technologies such as Hadoop, Spark, and distributed computing to extract insights from massive amounts of data.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.iss.one/datasciencefun
Like if you need similar content 😄👍
Hope this helps you 😊
1. Data Cleaning: Data cleaning is the process of identifying and correcting or removing errors, inconsistencies, and inaccuracies in a dataset. It is a crucial step in the data science pipeline as it ensures the quality and reliability of the data.
2. Exploratory Data Analysis (EDA): EDA is the process of analyzing and visualizing data to gain insights and understand the underlying patterns and relationships. It involves techniques such as summary statistics, data visualization, and correlation analysis.
3. Feature Engineering: Feature engineering is the process of creating new features or transforming existing features in a dataset to improve the performance of machine learning models. It involves techniques such as encoding categorical variables, scaling numerical variables, and creating interaction terms.
4. Machine Learning Algorithms: Machine learning algorithms are mathematical models that learn patterns and relationships from data to make predictions or decisions. Some important machine learning algorithms include linear regression, logistic regression, decision trees, random forests, support vector machines, and neural networks.
5. Model Evaluation and Validation: Model evaluation and validation involve assessing the performance of machine learning models on unseen data. It includes techniques such as cross-validation, confusion matrix, precision, recall, F1 score, and ROC curve analysis.
6. Feature Selection: Feature selection is the process of selecting the most relevant features from a dataset to improve model performance and reduce overfitting. It involves techniques such as correlation analysis, backward elimination, forward selection, and regularization methods.
7. Dimensionality Reduction: Dimensionality reduction techniques are used to reduce the number of features in a dataset while preserving the most important information. Principal Component Analysis (PCA) and t-SNE (t-Distributed Stochastic Neighbor Embedding) are common dimensionality reduction techniques.
8. Model Optimization: Model optimization involves fine-tuning the parameters and hyperparameters of machine learning models to achieve the best performance. Techniques such as grid search, random search, and Bayesian optimization are used for model optimization.
9. Data Visualization: Data visualization is the graphical representation of data to communicate insights and patterns effectively. It involves using charts, graphs, and plots to present data in a visually appealing and understandable manner.
10. Big Data Analytics: Big data analytics refers to the process of analyzing large and complex datasets that cannot be processed using traditional data processing techniques. It involves technologies such as Hadoop, Spark, and distributed computing to extract insights from massive amounts of data.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.iss.one/datasciencefun
Like if you need similar content 😄👍
Hope this helps you 😊
❤4