Python Projects & Resources
56.5K subscribers
779 photos
342 files
336 links
Perfect channel to learn Python Programming ๐Ÿ‡ฎ๐Ÿ‡ณ
Download Free Books & Courses to master Python Programming
- โœ… Free Courses
- โœ… Projects
- โœ… Pdfs
- โœ… Bootcamps
- โœ… Notes

Admin: @Coderfun
Download Telegram
Roadmap to Becoming a Python Developer ๐Ÿš€

1. Basics ๐ŸŒฑ
- Learn programming fundamentals and Python syntax.

2. Core Python ๐Ÿง 
- Master data structures, functions, and OOP.

3. Advanced Python ๐Ÿ“ˆ
- Explore modules, file handling, and exceptions.

4. Web Development ๐ŸŒ
- Use Django or Flask; build REST APIs.

5. Data Science ๐Ÿ“Š
- Learn NumPy, pandas, and Matplotlib.

6. Projects & Practice๐Ÿ’ก
- Build projects, contribute to open-source, join communities.

Like for more โค๏ธ

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค5
Guys, Big Announcement!

Weโ€™ve officially hit 2 MILLION followers โ€” and itโ€™s time to take our Python journey to the next level!

Iโ€™m super excited to launch the 30-Day Python Coding Challenge โ€” perfect for absolute beginners, interview prep, or anyone wanting to build real projects from scratch.

This challenge is your daily dose of Python โ€” bite-sized lessons with hands-on projects so you actually code every day and level up fast.

Hereโ€™s what youโ€™ll learn over the next 30 days:

Week 1: Python Fundamentals

- Variables & Data Types (Build your own bio/profile script)

- Operators (Mini calculator to sharpen math skills)

- Strings & String Methods (Word counter & palindrome checker)

- Lists & Tuples (Manage a grocery list like a pro)

- Dictionaries & Sets (Create your own contact book)

- Conditionals (Make a guess-the-number game)

- Loops (Multiplication tables & pattern printing)

Week 2: Functions & Logic โ€” Make Your Code Smarter

- Functions (Prime number checker)

- Function Arguments (Tip calculator with custom tips)

- Recursion Basics (Factorials & Fibonacci series)

- Lambda, map & filter (Process lists efficiently)

- List Comprehensions (Filter odd/even numbers easily)

- Error Handling (Build a safe input reader)

- Review + Mini Project (Command-line to-do list)


Week 3: Files, Modules & OOP

- Reading & Writing Files (Save and load notes)

- Custom Modules (Create your own utility math module)

- Classes & Objects (Student grade tracker)

- Inheritance & OOP (RPG character system)

- Dunder Methods (Build a custom string class)

- OOP Mini Project (Simple bank account system)

- Review & Practice (Quiz app using OOP concepts)


Week 4: Real-World Python & APIs โ€” Build Cool Apps

- JSON & APIs (Fetch weather data)

- Web Scraping (Extract titles from HTML)

- Regular Expressions (Find emails & phone numbers)

- Tkinter GUI (Create a simple counter app)

- CLI Tools (Command-line calculator with argparse)

- Automation (File organizer script)

- Final Project (Choose, build, and polish your app!)

React with โค๏ธ if you're ready for this new journey

You can join our WhatsApp channel to access it for free: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1661
โค12
Website Development Roadmap โ€“ 2025

๐Ÿ”น Stage 1: HTML โ€“ Learn the basics of web page structure.

๐Ÿ”น Stage 2: CSS โ€“ Style and enhance web pages (Flexbox, Grid, Animations).

๐Ÿ”น Stage 3: JavaScript (ES6+) โ€“ Add interactivity and dynamic features.

๐Ÿ”น Stage 4: Git & GitHub โ€“ Manage code versions and collaborate.

๐Ÿ”น Stage 5: Responsive Design โ€“ Make websites mobile-friendly (Media Queries, Bootstrap, Tailwind CSS).

๐Ÿ”น Stage 6: UI/UX Basics โ€“ Understand user experience and design principles.

๐Ÿ”น Stage 7: JavaScript Frameworks โ€“ Learn React.js, Vue.js, or Angular for interactive UIs.

๐Ÿ”น Stage 8: Backend Development โ€“ Use Node.js, PHP, Python, or Ruby to
build server-side logic.

๐Ÿ”น Stage 9: Databases โ€“ Work with MySQL, PostgreSQL, or MongoDB for data storage.

๐Ÿ”น Stage 10: RESTful APIs & GraphQL โ€“ Create APIs for data communication.

๐Ÿ”น Stage 11: Authentication & Security โ€“ Implement JWT, OAuth, and HTTPS best practices.

๐Ÿ”น Stage 12: Full Stack Project โ€“ Build a fully functional website with both frontend and backend.
๐Ÿ”น Stage 13: Testing & Debugging โ€“ Use Jest, Cypress, or other testing tools.
๐Ÿ”น Stage 14: Deployment โ€“ Host websites using Netlify, Vercel, or cloud services.
๐Ÿ”น Stage 15: Performance Optimization โ€“ Improve website speed (Lazy Loading, CDN, Caching).

๐Ÿ“‚ Web Development Resources

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค4
Python Roadmap for 2025: Complete Guide

1. Python Fundamentals
1.1 Variables, constants, and comments.
1.2 Data types: int, float, str, bool, complex.
1.3 Input and output (input(), print(), formatted strings).
1.4 Python syntax: Indentation and code structure.

2. Operators
2.1 Arithmetic: +, -, *, /, %, //, **.
2.2 Comparison: ==, !=, <, >, <=, >=.
2.3 Logical: and, or, not.
2.4 Bitwise: &, |, ^, ~, <<, >>.
2.5 Identity: is, is not.
2.6 Membership: in, not in.

3. Control Flow
3.1 Conditional statements: if, elif, else.
3.2 Loops: for, while.
3.3 Loop control: break, continue, pass.

4. Data Structures
4.1 Lists: Indexing, slicing, methods (append(), pop(), sort(), etc.).
4.2 Tuples: Immutability, packing/unpacking.
4.3 Dictionaries: Key-value pairs, methods (get(), items(), etc.).
4.4 Sets: Unique elements, set operations (union, intersection).
4.5 Strings: Immutability, methods (split(), strip(), replace()).

5. Functions
5.1 Defining functions with def.
5.2 Arguments: Positional, keyword, default, *args, **kwargs.
5.3 Anonymous functions (lambda).
5.4 Recursion.

6. Modules and Packages
6.1 Importing: import, from ... import.
6.2 Standard libraries: math, os, sys, random, datetime, time.
6.3 Installing external libraries with pip.

7. File Handling
7.1 Open and close files (open(), close()).
7.2 Read and write (read(), write(), readlines()).
7.3 Using context managers (with open(...)).

8. Object-Oriented Programming (OOP)
8.1 Classes and objects.
8.2 Methods and attributes.
8.3 Constructor (init).
8.4 Inheritance, polymorphism, encapsulation.
8.5 Special methods (str, repr, etc.).

9. Error and Exception Handling
9.1 try, except, else, finally.
9.2 Raising exceptions (raise).
9.3 Custom exceptions.

10. Comprehensions
10.1 List comprehensions.
10.2 Dictionary comprehensions.
10.3 Set comprehensions.

11. Iterators and Generators
11.1 Creating iterators using iter() and next().
11.2 Generators with yield.
11.3 Generator expressions.

12. Decorators and Closures
12.1 Functions as first-class citizens.
12.2 Nested functions.
12.3 Closures.
12.4 Creating and applying decorators.

13. Advanced Topics
13.1 Context managers (with statement).
13.2 Multithreading and multiprocessing.
13.3 Asynchronous programming with async and await.
13.4 Python's Global Interpreter Lock (GIL).

14. Python Internals
14.1 Mutable vs immutable objects.
14.2 Memory management and garbage collection.
14.3 Python's name == "main" mechanism.

15. Libraries and Frameworks
15.1 Data Science: NumPy, Pandas, Matplotlib, Seaborn.
15.2 Web Development: Flask, Django, FastAPI.
15.3 Testing: unittest, pytest.
15.4 APIs: requests, http.client.
15.5 Automation: selenium, os.
15.6 Machine Learning: scikit-learn, TensorFlow, PyTorch.

16. Tools and Best Practices
16.1 Debugging: pdb, breakpoints.

16.2 Code style: PEP 8 guidelines.
16.3 Virtual environments: venv.
16.4 Version control: Git + GitHub.

๐Ÿ‘‡ Python Interview ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€
https://t.iss.one/dsabooks

๐Ÿ“˜ ๐—ฃ๐—ฟ๐—ฒ๐—บ๐—ถ๐˜‚๐—บ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ : https://topmate.io/coding/914624

๐Ÿ“™ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ: https://whatsapp.com/channel/0029VaxbzNFCxoAmYgiGTL3Z

Join What's app channel for jobs updates: t.iss.one/getjobss
โค4
๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜ ๐˜ƒ๐˜€ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜๐—ถ๐˜€๐˜ ๐˜ƒ๐˜€ ๐—•๐˜‚๐˜€๐—ถ๐—ป๐—ฒ๐˜€๐˜€ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜ โ€” ๐—ช๐—ต๐—ถ๐—ฐ๐—ต ๐—ฃ๐—ฎ๐˜๐—ต ๐—ถ๐˜€ ๐—ฅ๐—ถ๐—ด๐—ต๐˜ ๐—ณ๐—ผ๐—ฟ ๐—ฌ๐—ผ๐˜‚? ๐Ÿค”

In todayโ€™s data-driven world, career clarity can make all the difference. Whether youโ€™re starting out in analytics, pivoting into data science, or aligning business with data as an analyst โ€” understanding the core responsibilities, skills, and tools of each role is crucial.

๐Ÿ” Hereโ€™s a quick breakdown from a visual I often refer to when mentoring professionals:

๐Ÿ”น ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜

๓ ฏโ€ข๓  Focus: Analyzing historical data to inform decisions.

๓ ฏโ€ข๓  Skills: SQL, basic stats, data visualization, reporting.

๓ ฏโ€ข๓  Tools: Excel, Tableau, Power BI, SQL.

๐Ÿ”น ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜๐—ถ๐˜€๐˜

๓ ฏโ€ข๓  Focus: Predictive modeling, ML, complex data analysis.

๓ ฏโ€ข๓  Skills: Programming, ML, deep learning, stats.

๓ ฏโ€ข๓  Tools: Python, R, TensorFlow, Scikit-Learn, Spark.

๐Ÿ”น ๐—•๐˜‚๐˜€๐—ถ๐—ป๐—ฒ๐˜€๐˜€ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜

๓ ฏโ€ข๓  Focus: Bridging business needs with data insights.

๓ ฏโ€ข๓  Skills: Communication, stakeholder management, process modeling.

๓ ฏโ€ข๓  Tools: Microsoft Office, BI tools, business process frameworks.

๐Ÿ‘‰ ๐— ๐˜† ๐—”๐—ฑ๐˜ƒ๐—ถ๐—ฐ๐—ฒ:

Start with what interests you the most and aligns with your current strengths. Are you business-savvy? Start as a Business Analyst. Love solving puzzles with data?

Explore Data Analyst. Want to build models and uncover deep insights? Head into Data Science.

๐Ÿ”— ๐—ง๐—ฎ๐—ธ๐—ฒ ๐˜๐—ถ๐—บ๐—ฒ ๐˜๐—ผ ๐˜€๐—ฒ๐—น๐—ณ-๐—ฎ๐˜€๐˜€๐—ฒ๐˜€๐˜€ ๐—ฎ๐—ป๐—ฑ ๐—ฐ๐—ต๐—ผ๐—ผ๐˜€๐—ฒ ๐—ฎ ๐—ฝ๐—ฎ๐˜๐—ต ๐˜๐—ต๐—ฎ๐˜ ๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ด๐—ถ๐˜‡๐—ฒ๐˜€ ๐˜†๐—ผ๐˜‚, not just one thatโ€™s trending.
โค5
Guys, We Did It!

We just crossed 1 Lakh followers on WhatsApp โ€” and Iโ€™m dropping something massive for you all!

Iโ€™m launching a Data Science Learning Series โ€” where I will cover essential Data Science & Machine Learning concepts from basic to advanced level covering real-world projects with step-by-step explanations, hands-on examples, and quizzes to test your skills after every major topic.

Hereโ€™s what weโ€™ll cover in the coming days:

Week 1: Data Science Foundations

- What is Data Science?

- Where is DS used in real life?

- Data Analyst vs Data Scientist vs ML Engineer

- Tools used in DS (with icons & examples)

- DS Life Cycle (Step-by-step)

- Mini Quiz: Week 1 Topics

Week 2: Python for Data Science (Basics Only)

- Variables, Data Types, Lists, Dicts (with real-world data)

- Loops & Conditional Statements

- Functions (only basics)

- Importing CSV, Viewing Data

- Intro to Pandas DataFrame

- Mini Quiz: Python Topics


Week 3: Data Cleaning & Preparation

- Handling Missing Data

- Duplicates, Outliers (conceptual + pandas code)

- Data Type Conversions

- Renaming Columns, Reindexing

- Combining Datasets

- Mini Quiz: Choose the right method (dropna vs fillna, etc.)


Week 4: Data Exploration & Visualization

- Descriptive Stats (mean, median, std)

- GroupBy, Value_counts

- Visualizing with Pandas (plot, bar, hist)

- Matplotlib & Seaborn (basic use only)

- Correlation & Heatmaps

- Mini Quiz: Match chart type with goal


Week 5: Feature Engineering + Intro to ML

What is Feature Engineering?

Encoding (Label, One-Hot), Scaling

Train-Test Split, ML Pipeline

Supervised vs Unsupervised

Linear Regression: Concept Only

Mini Quiz: Regression or Classification?



Week 6: Model Building & Evaluation

- Train a Linear Regression Model

- Logistic Regression (basic example)

- Model Evaluation (Accuracy, Precision, Recall)

- Confusion Matrix (explanation)

- Overfitting & Underfitting (concepts)

- Mini Quiz: Model Evaluation Scenarios

Week 7: Real-World Projects

- Project 1: Predict House Prices

- Project 2: Classify Emails as Spam

- Project 3: Explore Titanic Dataset

- How to structure your project

- What to upload on GitHub

- Mini Quiz: Whatโ€™s missing in this project?


Week 8: Career Boost Week

- Resume Tips for DS Roles

- Portfolio Tips (GitHub/Notion/PDF)

- Best Platforms to Apply (Internship + Job)

- 15 Most Common DS Interview Qs

- Mock Interview Questions for Practice

- Final Recap Quiz

React with โค๏ธ if you're ready for this new journey

Join our WhatsApp channel now: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/998
โค8๐Ÿ‘1
Call for papers on AI to AI Journey* conference journal has started!
Prize for the best scientific paper - 1 million roubles!


Selected papers will be published in the scientific journal Doklady Mathematics.

๐Ÿ“– The journal:
โ€ข  Indexed in the largest bibliographic databases of scientific citations
โ€ข  Accessible to an international audience and published in the worldโ€™s digital libraries

Submit your article by August 20 and get the opportunity not only to publish your research the scientific journal, but also to present it at the AI Journey conference.
Prize for the best article - 1 million roubles!

More detailed information can be found in the Selection Rules -> AI Journey

*AI Journey - a major online conference in the field of AI technologies
โค5
Most Important Mathematical Equations in Data Science!

1๏ธโƒฃ Gradient Descent: Optimization algorithm minimizing the cost function.
2๏ธโƒฃ Normal Distribution: Distribution characterized by mean ฮผ\muฮผ and variance ฯƒ2\sigma^2ฯƒ2.
3๏ธโƒฃ Sigmoid Function: Activation function mapping real values to 0-1 range.
4๏ธโƒฃ Linear Regression: Predictive model of linear input-output relationships.
5๏ธโƒฃ Cosine Similarity: Metric for vector similarity based on angle cosine.
6๏ธโƒฃ Naive Bayes: Classifier using Bayesโ€™ Theorem and feature independence.
7๏ธโƒฃ K-Means: Clustering minimizing distances to cluster centroids.
8๏ธโƒฃ Log Loss: Performance measure for probability output models.
9๏ธโƒฃ Mean Squared Error (MSE): Average of squared prediction errors.
๐Ÿ”Ÿ MSE (Bias-Variance Decomposition): Explains MSE through bias and variance.
1๏ธโƒฃ1๏ธโƒฃ MSE + L2 Regularization: Adds penalty to prevent overfitting.
1๏ธโƒฃ2๏ธโƒฃ Entropy: Uncertainty measure used in decision trees.
1๏ธโƒฃ3๏ธโƒฃ Softmax: Converts logits to probabilities for classification.
1๏ธโƒฃ4๏ธโƒฃ Ordinary Least Squares (OLS): Estimates regression parameters by minimizing residuals.
1๏ธโƒฃ5๏ธโƒฃ Correlation: Measures linear relationships between variables.
1๏ธโƒฃ6๏ธโƒฃ Z-score: Standardizes value based on standard deviations from mean.
1๏ธโƒฃ7๏ธโƒฃ Maximum Likelihood Estimation (MLE): Estimates parameters maximizing data likelihood.
1๏ธโƒฃ8๏ธโƒฃ Eigenvectors and Eigenvalues: Characterize linear transformations in matrices.
1๏ธโƒฃ9๏ธโƒฃ R-squared (Rยฒ): Proportion of variance explained by regression.
2๏ธโƒฃ0๏ธโƒฃ F1 Score: Harmonic mean of precision and recall.
2๏ธโƒฃ1๏ธโƒฃ Expected Value: Weighted average of all possible values.

Like if you need similar content ๐Ÿ˜„๐Ÿ‘
โค4๐Ÿ‘2
Python Interview Questions:

Ready to test your Python skills? Letโ€™s get started! ๐Ÿ’ป


1. How to check if a string is a palindrome?

def is_palindrome(s):
return s == s[::-1]

print(is_palindrome("madam")) # True
print(is_palindrome("hello")) # False

2. How to find the factorial of a number using recursion?

def factorial(n):
if n == 0 or n == 1:
return 1
return n * factorial(n - 1)

print(factorial(5)) # 120

3. How to merge two dictionaries in Python?

dict1 = {'a': 1, 'b': 2}
dict2 = {'c': 3, 'd': 4}

# Method 1 (Python 3.5+)
merged_dict = {**dict1, **dict2}

# Method 2 (Python 3.9+)
merged_dict = dict1 | dict2

print(merged_dict)

4. How to find the intersection of two lists?

list1 = [1, 2, 3, 4]
list2 = [3, 4, 5, 6]

intersection = list(set(list1) & set(list2))
print(intersection) # [3, 4]

5. How to generate a list of even numbers from 1 to 100?

even_numbers = [i for i in range(1, 101) if i % 2 == 0]
print(even_numbers)

6. How to find the longest word in a sentence?

def longest_word(sentence):
words = sentence.split()
return max(words, key=len)

print(longest_word("Python is a powerful language")) # "powerful"

7. How to count the frequency of elements in a list?

from collections import Counter

my_list = [1, 2, 2, 3, 3, 3, 4]
frequency = Counter(my_list)
print(frequency) # Counter({3: 3, 2: 2, 1: 1, 4: 1})

8. How to remove duplicates from a list while maintaining the order?

def remove_duplicates(lst):
return list(dict.fromkeys(lst))

my_list = [1, 2, 2, 3, 4, 4, 5]
print(remove_duplicates(my_list)) # [1, 2, 3, 4, 5]

9. How to reverse a linked list in Python?

class Node:
def __init__(self, data):
self.data = data
self.next = None

def reverse_linked_list(head):
prev = None
current = head
while current:
next_node = current.next
current.next = prev
prev = current
current = next_node
return prev

# Create linked list: 1 -> 2 -> 3
head = Node(1)
head.next = Node(2)
head.next.next = Node(3)

# Reverse and print the list
reversed_head = reverse_linked_list(head)
while reversed_head:
print(reversed_head.data, end=" -> ")
reversed_head = reversed_head.next

10. How to implement a simple binary search algorithm?

def binary_search(arr, target):
low, high = 0, len(arr) - 1
while low <= high:
mid = (low + high) // 2
if arr[mid] == target:
return mid
elif arr[mid] < target:
low = mid + 1
else:
high = mid - 1
return -1

print(binary_search([1, 2, 3, 4, 5, 6, 7], 4)) # 3


Here you can find essential Python Interview Resources๐Ÿ‘‡
https://t.iss.one/DataSimplifier

Like for more resources like this ๐Ÿ‘ โ™ฅ๏ธ

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
โค10
Data Science Learning Plan

Step 1: Mathematics for Data Science (Statistics, Probability, Linear Algebra)

Step 2: Python for Data Science (Basics and Libraries)

Step 3: Data Manipulation and Analysis (Pandas, NumPy)

Step 4: Data Visualization (Matplotlib, Seaborn, Plotly)

Step 5: Databases and SQL for Data Retrieval

Step 6: Introduction to Machine Learning (Supervised and Unsupervised Learning)

Step 7: Data Cleaning and Preprocessing

Step 8: Feature Engineering and Selection

Step 9: Model Evaluation and Tuning

Step 10: Deep Learning (Neural Networks, TensorFlow, Keras)

Step 11: Working with Big Data (Hadoop, Spark)

Step 12: Building Data Science Projects and Portfolio
โค4
Project ideas for college students
๐Ÿ‘2โค1
Boost your python speed by 300% ๐Ÿ‘†
โค4๐Ÿ‘4