Python Projects & Resources
56.9K subscribers
776 photos
342 files
327 links
Perfect channel to learn Python Programming ๐Ÿ‡ฎ๐Ÿ‡ณ
Download Free Books & Courses to master Python Programming
- โœ… Free Courses
- โœ… Projects
- โœ… Pdfs
- โœ… Bootcamps
- โœ… Notes

Admin: @Coderfun
Download Telegram
Built-in Data Types in Python ๐Ÿ‘†
โค9
Guys, Big Announcement!

Weโ€™ve officially hit 2 MILLION followers โ€” and itโ€™s time to take our Python journey to the next level!

Iโ€™m super excited to launch the 30-Day Python Coding Challenge โ€” perfect for absolute beginners, interview prep, or anyone wanting to build real projects from scratch.

This challenge is your daily dose of Python โ€” bite-sized lessons with hands-on projects so you actually code every day and level up fast.

Hereโ€™s what youโ€™ll learn over the next 30 days:

Week 1: Python Fundamentals

- Variables & Data Types (Build your own bio/profile script)

- Operators (Mini calculator to sharpen math skills)

- Strings & String Methods (Word counter & palindrome checker)

- Lists & Tuples (Manage a grocery list like a pro)

- Dictionaries & Sets (Create your own contact book)

- Conditionals (Make a guess-the-number game)

- Loops (Multiplication tables & pattern printing)

Week 2: Functions & Logic โ€” Make Your Code Smarter

- Functions (Prime number checker)

- Function Arguments (Tip calculator with custom tips)

- Recursion Basics (Factorials & Fibonacci series)

- Lambda, map & filter (Process lists efficiently)

- List Comprehensions (Filter odd/even numbers easily)

- Error Handling (Build a safe input reader)

- Review + Mini Project (Command-line to-do list)


Week 3: Files, Modules & OOP

- Reading & Writing Files (Save and load notes)

- Custom Modules (Create your own utility math module)

- Classes & Objects (Student grade tracker)

- Inheritance & OOP (RPG character system)

- Dunder Methods (Build a custom string class)

- OOP Mini Project (Simple bank account system)

- Review & Practice (Quiz app using OOP concepts)


Week 4: Real-World Python & APIs โ€” Build Cool Apps

- JSON & APIs (Fetch weather data)

- Web Scraping (Extract titles from HTML)

- Regular Expressions (Find emails & phone numbers)

- Tkinter GUI (Create a simple counter app)

- CLI Tools (Command-line calculator with argparse)

- Automation (File organizer script)

- Final Project (Choose, build, and polish your app!)

React with โค๏ธ if you're ready for this new journey

You can join our WhatsApp channel to access it for free: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1661
โค11๐Ÿ˜1
Machine Learning isn't easy!

Itโ€™s the field that powers intelligent systems and predictive models.

To truly master Machine Learning, focus on these key areas:

0. Understanding the Basics of Algorithms: Learn about linear regression, decision trees, and k-nearest neighbors to build a solid foundation.


1. Mastering Data Preprocessing: Clean, normalize, and handle missing data to prepare your datasets for training.


2. Learning Supervised Learning Techniques: Dive deep into classification and regression models, such as SVMs, random forests, and logistic regression.


3. Exploring Unsupervised Learning: Understand clustering techniques (K-means, hierarchical) and dimensionality reduction (PCA, t-SNE).


4. Mastering Model Evaluation: Use techniques like cross-validation, confusion matrices, ROC curves, and F1 scores to assess model performance.


5. Understanding Overfitting and Underfitting: Learn how to balance bias and variance to build robust models.


6. Optimizing Hyperparameters: Use grid search, random search, and Bayesian optimization to fine-tune your models for better performance.


7. Diving into Neural Networks and Deep Learning: Explore deep learning with frameworks like TensorFlow and PyTorch to create advanced models like CNNs and RNNs.


8. Working with Natural Language Processing (NLP): Master text data, sentiment analysis, and techniques like word embeddings and transformers.


9. Staying Updated with New Techniques: Machine learning evolves rapidlyโ€”keep up with emerging models, techniques, and research.



Machine learning is about learning from data and improving models over time.

๐Ÿ’ก Embrace the challenges of building algorithms, experimenting with data, and solving complex problems.

โณ With time, practice, and persistence, youโ€™ll develop the expertise to create systems that learn, predict, and adapt.

Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.iss.one/datasciencefun

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š

#datascience
โค2
Python Projects For Hacking
โค6
๐Ÿ‘4
Python Libraries for Data Science
โค5
๐— ๐—ผ๐˜€๐˜ ๐—”๐˜€๐—ธ๐—ฒ๐—ฑ ๐—ฆ๐—ค๐—Ÿ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐—ค๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐—ฎ๐˜ ๐— ๐—”๐—”๐—ก๐—š ๐—–๐—ผ๐—บ๐—ฝ๐—ฎ๐—ป๐—ถ๐—ฒ๐˜€๐Ÿ”ฅ๐Ÿ”ฅ

1. How do you retrieve all columns from a table?

SELECT * FROM table_name;


2. What SQL statement is used to filter records?

SELECT * FROM table_name
WHERE condition;

The WHERE clause is used to filter records based on a specified condition.


3. How can you join multiple tables? Describe different types of JOINs.

SELECT columns
FROM table1
JOIN table2 ON table1.column = table2.column
JOIN table3 ON table2.column = table3.column;

Types of JOINs:

1. INNER JOIN: Returns records with matching values in both tables

SELECT * FROM table1
INNER JOIN table2 ON table1.column = table2.column;

2. LEFT JOIN (or LEFT OUTER JOIN): Returns all records from the left table and matched records from the right table. Unmatched records will have NULL values.

SELECT * FROM table1
LEFT JOIN table2 ON table1.column = table2.column;

3. RIGHT JOIN (or RIGHT OUTER JOIN): Returns all records from the right table and matched records from the left table. Unmatched records will have NULL values.

SELECT * FROM table1
RIGHT JOIN table2 ON table1.column = table2.column;

4. FULL JOIN (or FULL OUTER JOIN): Returns records when there is a match in either left or right table. Unmatched records will have NULL values.

SELECT * FROM table1
FULL JOIN table2 ON table1.column = table2.column;


4. What is the difference between WHERE and HAVING clauses?

WHERE: Filters records before any groupings are made.

SELECT * FROM table_name
WHERE condition;

HAVING: Filters records after groupings are made.

SELECT column, COUNT(*)
FROM table_name
GROUP BY column
HAVING COUNT(*) > value;


5. How do you count the number of records in a table?

SELECT COUNT(*) FROM table_name;

This query counts all the records in the specified table.

6. How do you calculate average, sum, minimum, and maximum values in a column?

Average: SELECT AVG(column_name) FROM table_name;

Sum: SELECT SUM(column_name) FROM table_name;

Minimum: SELECT MIN(column_name) FROM table_name;

Maximum: SELECT MAX(column_name) FROM table_name;


7. What is a subquery, and how do you use it?

Subquery: A query nested inside another query

SELECT * FROM table_name
WHERE column_name = (SELECT column_name FROM another_table WHERE condition);




Till then keep learning and keep exploring ๐Ÿ™Œ
โค7
Python for Data Analysis: Must-Know Libraries ๐Ÿ‘‡๐Ÿ‘‡

Python is one of the most powerful tools for Data Analysts, and these libraries will supercharge your data analysis workflow by helping you clean, manipulate, and visualize data efficiently.

๐Ÿ”ฅ Essential Python Libraries for Data Analysis:

โœ… Pandas โ€“ The go-to library for data manipulation. It helps in filtering, grouping, merging datasets, handling missing values, and transforming data into a structured format.

๐Ÿ“Œ Example: Loading a CSV file and displaying the first 5 rows:

import pandas as pd df = pd.read_csv('data.csv') print(df.head()) 


โœ… NumPy โ€“ Used for handling numerical data and performing complex calculations. It provides support for multi-dimensional arrays and efficient mathematical operations.

๐Ÿ“Œ Example: Creating an array and performing basic operations:

import numpy as np arr = np.array([10, 20, 30]) print(arr.mean()) # Calculates the average 


โœ… Matplotlib & Seaborn โ€“ These are used for creating visualizations like line graphs, bar charts, and scatter plots to understand trends and patterns in data.

๐Ÿ“Œ Example: Creating a basic bar chart:

import matplotlib.pyplot as plt plt.bar(['A', 'B', 'C'], [5, 7, 3]) plt.show() 


โœ… Scikit-Learn โ€“ A must-learn library if you want to apply machine learning techniques like regression, classification, and clustering on your dataset.

โœ… OpenPyXL โ€“ Helps in automating Excel reports using Python by reading, writing, and modifying Excel files.

๐Ÿ’ก Challenge for You!
Try writing a Python script that:
1๏ธโƒฃ Reads a CSV file
2๏ธโƒฃ Cleans missing data
3๏ธโƒฃ Creates a simple visualization

React with โ™ฅ๏ธ if you want me to post the script for above challenge! โฌ‡๏ธ

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
โค5๐Ÿ”ฅ4
Python ๐Ÿ’ชโค๏ธ
โค12๐Ÿ”ฅ1
Python password generator
โค16