Python Projects & Resources
57K subscribers
776 photos
342 files
326 links
Perfect channel to learn Python Programming ๐Ÿ‡ฎ๐Ÿ‡ณ
Download Free Books & Courses to master Python Programming
- โœ… Free Courses
- โœ… Projects
- โœ… Pdfs
- โœ… Bootcamps
- โœ… Notes

Admin: @Coderfun
Download Telegram
Project ideas for college students
โค7
๐Ÿค– AI/ML Roadmap

1๏ธโƒฃ Math & Stats ๐Ÿงฎ๐Ÿ”ข: Learn Linear Algebra, Probability, and Calculus.
2๏ธโƒฃ Programming ๐Ÿ๐Ÿ’ป: Master Python, NumPy, Pandas, and Matplotlib.
3๏ธโƒฃ Machine Learning ๐Ÿ“ˆ๐Ÿค–: Study Supervised & Unsupervised Learning, and Model Evaluation.
4๏ธโƒฃ Deep Learning ๐Ÿ”ฅ๐Ÿง : Understand Neural Networks, CNNs, RNNs, and Transformers.
5๏ธโƒฃ Specializations ๐ŸŽ“๐Ÿ”ฌ: Choose from NLP, Computer Vision, or Reinforcement Learning.
6๏ธโƒฃ Big Data & Cloud โ˜๏ธ๐Ÿ“ก: Work with SQL, NoSQL, AWS, and GCP.
7๏ธโƒฃ MLOps & Deployment ๐Ÿš€๐Ÿ› ๏ธ: Learn Flask, Docker, and Kubernetes.
8๏ธโƒฃ Ethics & Safety โš–๏ธ๐Ÿ›ก๏ธ: Understand Bias, Fairness, and Explainability.
9๏ธโƒฃ Research & Practice ๐Ÿ“œ๐Ÿ”: Read Papers and Build Projects.
๐Ÿ”Ÿ Projects ๐Ÿ“‚๐Ÿš€: Compete in Kaggle and contribute to Open-Source.

React โค๏ธ for more

#ai
โค15๐Ÿ‘1๐Ÿ”ฅ1
Top 5 Regression Algorithms in ML
โค5
Free Datasets to practice data science projects

1. Enron Email Dataset

Data Link: https://www.cs.cmu.edu/~enron/

2. Chatbot Intents Dataset

Data Link: https://github.com/katanaml/katana-assistant/blob/master/mlbackend/intents.json

3. Flickr 30k Dataset

Data Link: https://www.kaggle.com/hsankesara/flickr-image-dataset

4. Parkinson Dataset

Data Link: https://archive.ics.uci.edu/ml/datasets/parkinsons

5. Iris Dataset

Data Link: https://archive.ics.uci.edu/ml/datasets/Iris

6. ImageNet dataset

Data Link: https://www.image-net.org/

7. Mall Customers Dataset

Data Link: https://www.kaggle.com/shwetabh123/mall-customers

8. Google Trends Data Portal

Data Link: https://trends.google.com/trends/

9. The Boston Housing Dataset

Data Link: https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html

10. Uber Pickups Dataset

Data Link: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city

11. Recommender Systems Dataset

Data Link: https://cseweb.ucsd.edu/~jmcauley/datasets.html

Source Code: https://bit.ly/37iBDEp

12. UCI Spambase Dataset

Data Link: https://archive.ics.uci.edu/ml/datasets/Spambase

13. GTSRB (German traffic sign recognition benchmark) Dataset

Data Link: https://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset

Source Code: https://bit.ly/39taSyH

14. Cityscapes Dataset

Data Link: https://www.cityscapes-dataset.com/

15. Kinetics Dataset

Data Link: https://deepmind.com/research/open-source/kinetics

16. IMDB-Wiki dataset

Data Link: https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/


17. Color Detection Dataset

Data Link: https://github.com/codebrainz/color-names/blob/master/output/colors.csv


18. Urban Sound 8K dataset

Data Link: https://urbansounddataset.weebly.com/urbansound8k.html

19. Librispeech Dataset

Data Link: https://www.openslr.org/12

20. Breast Histopathology Images Dataset

Data Link: https://www.kaggle.com/paultimothymooney/breast-histopathology-images

21. Youtube 8M Dataset

Data Link: https://research.google.com/youtube8m/

Join for more -> https://whatsapp.com/channel/0029VaxbzNFCxoAmYgiGTL3Z

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค4๐Ÿ‘3
Source codes for data science projects ๐Ÿ‘‡๐Ÿ‘‡

1. Build chatbots:
https://dzone.com/articles/python-chatbot-project-build-your-first-python-pro

2. Credit card fraud detection:
https://www.kaggle.com/renjithmadhavan/credit-card-fraud-detection-using-python

3. Fake news detection
https://data-flair.training/blogs/advanced-python-project-detecting-fake-news/

4.Driver Drowsiness Detection
https://data-flair.training/blogs/python-project-driver-drowsiness-detection-system/

5. Recommender Systems (Movie Recommendation)
https://data-flair.training/blogs/data-science-r-movie-recommendation/

6. Sentiment Analysis
https://data-flair.training/blogs/data-science-r-sentiment-analysis-project/

7. Gender Detection & Age Prediction
https://www.pyimagesearch.com/2020/04/13/opencv-age-detection-with-deep-learning/

๐—˜๐—ก๐—๐—ข๐—ฌ ๐—Ÿ๐—˜๐—”๐—ฅ๐—ก๐—œ๐—ก๐—š๐Ÿ‘๐Ÿ‘
โค4
๐Ÿš€ Key Skills for Aspiring Tech Specialists

๐Ÿ“Š Data Analyst:
- Proficiency in SQL for database querying
- Advanced Excel for data manipulation
- Programming with Python or R for data analysis
- Statistical analysis to understand data trends
- Data visualization tools like Tableau or PowerBI
- Data preprocessing to clean and structure data
- Exploratory data analysis techniques

๐Ÿง  Data Scientist:
- Strong knowledge of Python and R for statistical analysis
- Machine learning for predictive modeling
- Deep understanding of mathematics and statistics
- Data wrangling to prepare data for analysis
- Big data platforms like Hadoop or Spark
- Data visualization and communication skills
- Experience with A/B testing frameworks

๐Ÿ— Data Engineer:
- Expertise in SQL and NoSQL databases
- Experience with data warehousing solutions
- ETL (Extract, Transform, Load) process knowledge
- Familiarity with big data tools (e.g., Apache Spark)
- Proficient in Python, Java, or Scala
- Knowledge of cloud services like AWS, GCP, or Azure
- Understanding of data pipeline and workflow management tools

๐Ÿค– Machine Learning Engineer:
- Proficiency in Python and libraries like scikit-learn, TensorFlow
- Solid understanding of machine learning algorithms
- Experience with neural networks and deep learning frameworks
- Ability to implement models and fine-tune their parameters
- Knowledge of software engineering best practices
- Data modeling and evaluation strategies
- Strong mathematical skills, particularly in linear algebra and calculus

๐Ÿง  Deep Learning Engineer:
- Expertise in deep learning frameworks like TensorFlow or PyTorch
- Understanding of Convolutional and Recurrent Neural Networks
- Experience with GPU computing and parallel processing
- Familiarity with computer vision and natural language processing
- Ability to handle large datasets and train complex models
- Research mindset to keep up with the latest developments in deep learning

๐Ÿคฏ AI Engineer:
- Solid foundation in algorithms, logic, and mathematics
- Proficiency in programming languages like Python or C++
- Experience with AI technologies including ML, neural networks, and cognitive computing
- Understanding of AI model deployment and scaling
- Knowledge of AI ethics and responsible AI practices
- Strong problem-solving and analytical skills

๐Ÿ”Š NLP Engineer:
- Background in linguistics and language models
- Proficiency with NLP libraries (e.g., NLTK, spaCy)
- Experience with text preprocessing and tokenization
- Understanding of sentiment analysis, text classification, and named entity recognition
- Familiarity with transformer models like BERT and GPT
- Ability to work with large text datasets and sequential data

๐ŸŒŸ Embrace the world of data and AI, and become the architect of tomorrow's technology!
๐Ÿ‘3โค2
Amazon Interview Process for Data Scientist position

๐Ÿ“Round 1- Phone Screen round
This was a preliminary round to check my capability, projects to coding, Stats, ML, etc.

After clearing this round the technical Interview rounds started. There were 5-6 rounds (Multiple rounds in one day).

๐Ÿ“ ๐—ฅ๐—ผ๐˜‚๐—ป๐—ฑ ๐Ÿฎ- ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—•๐—ฟ๐—ฒ๐—ฎ๐—ฑ๐˜๐—ต:
In this round the interviewer tested my knowledge on different kinds of topics.

๐Ÿ“๐—ฅ๐—ผ๐˜‚๐—ป๐—ฑ ๐Ÿฏ- ๐——๐—ฒ๐—ฝ๐˜๐—ต ๐—ฅ๐—ผ๐˜‚๐—ป๐—ฑ:
In this round the interviewers grilled deeper into 1-2 topics. I was asked questions around:
Standard ML tech, Linear Equation, Techniques, etc.

๐Ÿ“๐—ฅ๐—ผ๐˜‚๐—ป๐—ฑ ๐Ÿฐ- ๐—–๐—ผ๐—ฑ๐—ถ๐—ป๐—ด ๐—ฅ๐—ผ๐˜‚๐—ป๐—ฑ-
This was a Python coding round, which I cleared successfully.

๐Ÿ“๐—ฅ๐—ผ๐˜‚๐—ป๐—ฑ ๐Ÿฑ- This was ๐—›๐—ถ๐—ฟ๐—ถ๐—ป๐—ด ๐— ๐—ฎ๐—ป๐—ฎ๐—ด๐—ฒ๐—ฟ where my fitment for the team got assessed.

๐Ÿ“๐—Ÿ๐—ฎ๐˜€๐˜ ๐—ฅ๐—ผ๐˜‚๐—ป๐—ฑ- ๐—•๐—ฎ๐—ฟ ๐—ฅ๐—ฎ๐—ถ๐˜€๐—ฒ๐—ฟ- Very important round, I was asked heavily around Leadership principles & Employee dignity questions.

So, here are my Tips if youโ€™re targeting any Data Science role:
-> Never make up stuff & donโ€™t lie in your Resume.
-> Projects thoroughly study.
-> Practice SQL, DSA, Coding problem on Leetcode/Hackerank.
-> Download data from Kaggle & build EDA (Data manipulation questions are asked)

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค3๐Ÿ‘1
5 Handy Tips to master Data Science โฌ‡๏ธ


1๏ธโƒฃ Begin with introductory projects that cover the fundamental concepts of data science, such as data exploration, cleaning, and visualization. These projects will help you get familiar with common data science tools and libraries like Python (Pandas, NumPy, Matplotlib), R, SQL, and Excel

2๏ธโƒฃ Look for publicly available datasets from sources like Kaggle, UCI Machine Learning Repository. Working with real-world data will expose you to the challenges of messy, incomplete, and heterogeneous data, which is common in practical scenarios.

3๏ธโƒฃ Explore various data science techniques like regression, classification, clustering, and time series analysis. Apply these techniques to different datasets and domains to gain a broader understanding of their strengths, weaknesses, and appropriate use cases.

4๏ธโƒฃ Work on projects that involve the entire data science lifecycle, from data collection and cleaning to model building, evaluation, and deployment. This will help you understand how different components of the data science process fit together.

5๏ธโƒฃ Consistent practice is key to mastering any skill. Set aside dedicated time to work on data science projects, and gradually increase the complexity and scope of your projects as you gain more experience.
โค2๐Ÿ‘1
List Slicing in Python ๐Ÿ‘†
โค6๐Ÿ‘1
Preparing for a machine learning interview as a data analyst is a great step.

Here are some common machine learning interview questions :-

1. Explain the steps involved in a machine learning project lifecycle.

2. What is the difference between supervised and unsupervised learning? Give examples of each.

3. What evaluation metrics would you use to assess the performance of a regression model?

4. What is overfitting and how can you prevent it?

5. Describe the bias-variance tradeoff.

6. What is cross-validation, and why is it important in machine learning?

7. What are some feature selection techniques you are familiar with?

8.What are the assumptions of linear regression?

9. How does regularization help in linear models?

10. Explain the difference between classification and regression.

11. What are some common algorithms used for dimensionality reduction?

12. Describe how a decision tree works.

13. What are ensemble methods, and why are they useful?

14. How do you handle missing or corrupted data in a dataset?

15. What are the different kernels used in Support Vector Machines (SVM)?


These questions cover a range of fundamental concepts and techniques in machine learning that are important for a data scientist role.
Good luck with your interview preparation!


Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Like if you need similar content ๐Ÿ˜„๐Ÿ‘
โค4๐Ÿ‘1
Machine learning is a subset of artificial intelligence that involves developing algorithms and models that enable computers to learn from and make predictions or decisions based on data. In machine learning, computers are trained on large datasets to identify patterns, relationships, and trends without being explicitly programmed to do so.

There are three main types of machine learning: supervised learning, unsupervised learning, and reinforcement learning. In supervised learning, the algorithm is trained on labeled data, where the correct output is provided along with the input data. Unsupervised learning involves training the algorithm on unlabeled data, allowing it to identify patterns and relationships on its own. Reinforcement learning involves training an algorithm to make decisions by rewarding or punishing it based on its actions.

Machine learning algorithms can be used for a wide range of applications, including image and speech recognition, natural language processing, recommendation systems, predictive analytics, and more. These algorithms can be trained using various techniques such as neural networks, decision trees, support vector machines, and clustering algorithms.

Free Machine Learning Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

React โค๏ธ for more free resources
โค4๐Ÿ‘2
Preparing for a machine learning interview as a data analyst is a great step.

Here are some common machine learning interview questions :-

1. Explain the steps involved in a machine learning project lifecycle.

2. What is the difference between supervised and unsupervised learning? Give examples of each.

3. What evaluation metrics would you use to assess the performance of a regression model?

4. What is overfitting and how can you prevent it?

5. Describe the bias-variance tradeoff.

6. What is cross-validation, and why is it important in machine learning?

7. What are some feature selection techniques you are familiar with?

8.What are the assumptions of linear regression?

9. How does regularization help in linear models?

10. Explain the difference between classification and regression.

11. What are some common algorithms used for dimensionality reduction?

12. Describe how a decision tree works.

13. What are ensemble methods, and why are they useful?

14. How do you handle missing or corrupted data in a dataset?

15. What are the different kernels used in Support Vector Machines (SVM)?


These questions cover a range of fundamental concepts and techniques in machine learning that are important for a data scientist role.
Good luck with your interview preparation!


Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Like if you need similar content ๐Ÿ˜„๐Ÿ‘
โค4๐Ÿ‘1
Artificial Intelligence (AI) is the simulation of human intelligence in machines that are designed to think, learn, and make decisions. From virtual assistants to self-driving cars, AI is transforming how we interact with technology.

Hers is the brief A-Z overview of the terms used in Artificial Intelligence World

A - Algorithm: A set of rules or instructions that an AI system follows to solve problems or make decisions.

B - Bias: Prejudice in AI systems due to skewed training data, leading to unfair outcomes.

C - Chatbot: AI software that can hold conversations with users via text or voice.

D - Deep Learning: A type of machine learning using layered neural networks to analyze data and make decisions.

E - Expert System: An AI that replicates the decision-making ability of a human expert in a specific domain.

F - Fine-Tuning: The process of refining a pre-trained model on a specific task or dataset.

G - Generative AI: AI that can create new content like text, images, audio, or code.

H - Heuristic: A rule-of-thumb or shortcut used by AI to make decisions efficiently.

I - Image Recognition: The ability of AI to detect and classify objects or features in an image.

J - Jupyter Notebook: A tool widely used in AI for interactive coding, data visualization, and documentation.

K - Knowledge Representation: How AI systems store, organize, and use information for reasoning.

L - LLM (Large Language Model): An AI trained on large text datasets to understand and generate human language (e.g., GPT-4).

M - Machine Learning: A branch of AI where systems learn from data instead of being explicitly programmed.

N - NLP (Natural Language Processing): AI's ability to understand, interpret, and generate human language.

O - Overfitting: When a model performs well on training data but poorly on unseen data due to memorizing instead of generalizing.

P - Prompt Engineering: Crafting effective inputs to steer generative AI toward desired responses.

Q - Q-Learning: A reinforcement learning algorithm that helps agents learn the best actions to take.

R - Reinforcement Learning: A type of learning where AI agents learn by interacting with environments and receiving rewards.

S - Supervised Learning: Machine learning where models are trained on labeled datasets.

T - Transformer: A neural network architecture powering models like GPT and BERT, crucial in NLP tasks.

U - Unsupervised Learning: A method where AI finds patterns in data without labeled outcomes.

V - Vision (Computer Vision): The field of AI that enables machines to interpret and process visual data.

W - Weak AI: AI designed to handle narrow tasks without consciousness or general intelligence.

X - Explainable AI (XAI): Techniques that make AI decision-making transparent and understandable to humans.

Y - YOLO (You Only Look Once): A popular real-time object detection algorithm in computer vision.

Z - Zero-shot Learning: The ability of AI to perform tasks it hasnโ€™t been explicitly trained on.

Credits: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
โค6๐Ÿ‘1