Python for Data Analysis: Must-Know Libraries ๐๐
Python is one of the most powerful tools for Data Analysts, and these libraries will supercharge your data analysis workflow by helping you clean, manipulate, and visualize data efficiently.
๐ฅ Essential Python Libraries for Data Analysis:
โ Pandas โ The go-to library for data manipulation. It helps in filtering, grouping, merging datasets, handling missing values, and transforming data into a structured format.
๐ Example: Loading a CSV file and displaying the first 5 rows:
โ NumPy โ Used for handling numerical data and performing complex calculations. It provides support for multi-dimensional arrays and efficient mathematical operations.
๐ Example: Creating an array and performing basic operations:
โ Matplotlib & Seaborn โ These are used for creating visualizations like line graphs, bar charts, and scatter plots to understand trends and patterns in data.
๐ Example: Creating a basic bar chart:
โ Scikit-Learn โ A must-learn library if you want to apply machine learning techniques like regression, classification, and clustering on your dataset.
โ OpenPyXL โ Helps in automating Excel reports using Python by reading, writing, and modifying Excel files.
๐ก Challenge for You!
Try writing a Python script that:
1๏ธโฃ Reads a CSV file
2๏ธโฃ Cleans missing data
3๏ธโฃ Creates a simple visualization
React with โฅ๏ธ if you want me to post the script for above challenge! โฌ๏ธ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
Python is one of the most powerful tools for Data Analysts, and these libraries will supercharge your data analysis workflow by helping you clean, manipulate, and visualize data efficiently.
๐ฅ Essential Python Libraries for Data Analysis:
โ Pandas โ The go-to library for data manipulation. It helps in filtering, grouping, merging datasets, handling missing values, and transforming data into a structured format.
๐ Example: Loading a CSV file and displaying the first 5 rows:
import pandas as pd df = pd.read_csv('data.csv') print(df.head())
โ NumPy โ Used for handling numerical data and performing complex calculations. It provides support for multi-dimensional arrays and efficient mathematical operations.
๐ Example: Creating an array and performing basic operations:
import numpy as np arr = np.array([10, 20, 30]) print(arr.mean()) # Calculates the average
โ Matplotlib & Seaborn โ These are used for creating visualizations like line graphs, bar charts, and scatter plots to understand trends and patterns in data.
๐ Example: Creating a basic bar chart:
import matplotlib.pyplot as plt plt.bar(['A', 'B', 'C'], [5, 7, 3]) plt.show()
โ Scikit-Learn โ A must-learn library if you want to apply machine learning techniques like regression, classification, and clustering on your dataset.
โ OpenPyXL โ Helps in automating Excel reports using Python by reading, writing, and modifying Excel files.
๐ก Challenge for You!
Try writing a Python script that:
1๏ธโฃ Reads a CSV file
2๏ธโฃ Cleans missing data
3๏ธโฃ Creates a simple visualization
React with โฅ๏ธ if you want me to post the script for above challenge! โฌ๏ธ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
โค5๐1
๐ค AI/ML Roadmap
1๏ธโฃ Math & Stats ๐งฎ๐ข: Learn Linear Algebra, Probability, and Calculus.
2๏ธโฃ Programming ๐๐ป: Master Python, NumPy, Pandas, and Matplotlib.
3๏ธโฃ Machine Learning ๐๐ค: Study Supervised & Unsupervised Learning, and Model Evaluation.
4๏ธโฃ Deep Learning ๐ฅ๐ง : Understand Neural Networks, CNNs, RNNs, and Transformers.
5๏ธโฃ Specializations ๐๐ฌ: Choose from NLP, Computer Vision, or Reinforcement Learning.
6๏ธโฃ Big Data & Cloud โ๏ธ๐ก: Work with SQL, NoSQL, AWS, and GCP.
7๏ธโฃ MLOps & Deployment ๐๐ ๏ธ: Learn Flask, Docker, and Kubernetes.
8๏ธโฃ Ethics & Safety โ๏ธ๐ก๏ธ: Understand Bias, Fairness, and Explainability.
9๏ธโฃ Research & Practice ๐๐: Read Papers and Build Projects.
๐ Projects ๐๐: Compete in Kaggle and contribute to Open-Source.
React โค๏ธ for more
#ai
1๏ธโฃ Math & Stats ๐งฎ๐ข: Learn Linear Algebra, Probability, and Calculus.
2๏ธโฃ Programming ๐๐ป: Master Python, NumPy, Pandas, and Matplotlib.
3๏ธโฃ Machine Learning ๐๐ค: Study Supervised & Unsupervised Learning, and Model Evaluation.
4๏ธโฃ Deep Learning ๐ฅ๐ง : Understand Neural Networks, CNNs, RNNs, and Transformers.
5๏ธโฃ Specializations ๐๐ฌ: Choose from NLP, Computer Vision, or Reinforcement Learning.
6๏ธโฃ Big Data & Cloud โ๏ธ๐ก: Work with SQL, NoSQL, AWS, and GCP.
7๏ธโฃ MLOps & Deployment ๐๐ ๏ธ: Learn Flask, Docker, and Kubernetes.
8๏ธโฃ Ethics & Safety โ๏ธ๐ก๏ธ: Understand Bias, Fairness, and Explainability.
9๏ธโฃ Research & Practice ๐๐: Read Papers and Build Projects.
๐ Projects ๐๐: Compete in Kaggle and contribute to Open-Source.
React โค๏ธ for more
#ai
โค15๐1๐ฅ1
Free Datasets to practice data science projects
1. Enron Email Dataset
Data Link: https://www.cs.cmu.edu/~enron/
2. Chatbot Intents Dataset
Data Link: https://github.com/katanaml/katana-assistant/blob/master/mlbackend/intents.json
3. Flickr 30k Dataset
Data Link: https://www.kaggle.com/hsankesara/flickr-image-dataset
4. Parkinson Dataset
Data Link: https://archive.ics.uci.edu/ml/datasets/parkinsons
5. Iris Dataset
Data Link: https://archive.ics.uci.edu/ml/datasets/Iris
6. ImageNet dataset
Data Link: https://www.image-net.org/
7. Mall Customers Dataset
Data Link: https://www.kaggle.com/shwetabh123/mall-customers
8. Google Trends Data Portal
Data Link: https://trends.google.com/trends/
9. The Boston Housing Dataset
Data Link: https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
10. Uber Pickups Dataset
Data Link: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city
11. Recommender Systems Dataset
Data Link: https://cseweb.ucsd.edu/~jmcauley/datasets.html
Source Code: https://bit.ly/37iBDEp
12. UCI Spambase Dataset
Data Link: https://archive.ics.uci.edu/ml/datasets/Spambase
13. GTSRB (German traffic sign recognition benchmark) Dataset
Data Link: https://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
Source Code: https://bit.ly/39taSyH
14. Cityscapes Dataset
Data Link: https://www.cityscapes-dataset.com/
15. Kinetics Dataset
Data Link: https://deepmind.com/research/open-source/kinetics
16. IMDB-Wiki dataset
Data Link: https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
17. Color Detection Dataset
Data Link: https://github.com/codebrainz/color-names/blob/master/output/colors.csv
18. Urban Sound 8K dataset
Data Link: https://urbansounddataset.weebly.com/urbansound8k.html
19. Librispeech Dataset
Data Link: https://www.openslr.org/12
20. Breast Histopathology Images Dataset
Data Link: https://www.kaggle.com/paultimothymooney/breast-histopathology-images
21. Youtube 8M Dataset
Data Link: https://research.google.com/youtube8m/
Join for more -> https://whatsapp.com/channel/0029VaxbzNFCxoAmYgiGTL3Z
ENJOY LEARNING ๐๐
1. Enron Email Dataset
Data Link: https://www.cs.cmu.edu/~enron/
2. Chatbot Intents Dataset
Data Link: https://github.com/katanaml/katana-assistant/blob/master/mlbackend/intents.json
3. Flickr 30k Dataset
Data Link: https://www.kaggle.com/hsankesara/flickr-image-dataset
4. Parkinson Dataset
Data Link: https://archive.ics.uci.edu/ml/datasets/parkinsons
5. Iris Dataset
Data Link: https://archive.ics.uci.edu/ml/datasets/Iris
6. ImageNet dataset
Data Link: https://www.image-net.org/
7. Mall Customers Dataset
Data Link: https://www.kaggle.com/shwetabh123/mall-customers
8. Google Trends Data Portal
Data Link: https://trends.google.com/trends/
9. The Boston Housing Dataset
Data Link: https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
10. Uber Pickups Dataset
Data Link: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city
11. Recommender Systems Dataset
Data Link: https://cseweb.ucsd.edu/~jmcauley/datasets.html
Source Code: https://bit.ly/37iBDEp
12. UCI Spambase Dataset
Data Link: https://archive.ics.uci.edu/ml/datasets/Spambase
13. GTSRB (German traffic sign recognition benchmark) Dataset
Data Link: https://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
Source Code: https://bit.ly/39taSyH
14. Cityscapes Dataset
Data Link: https://www.cityscapes-dataset.com/
15. Kinetics Dataset
Data Link: https://deepmind.com/research/open-source/kinetics
16. IMDB-Wiki dataset
Data Link: https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
17. Color Detection Dataset
Data Link: https://github.com/codebrainz/color-names/blob/master/output/colors.csv
18. Urban Sound 8K dataset
Data Link: https://urbansounddataset.weebly.com/urbansound8k.html
19. Librispeech Dataset
Data Link: https://www.openslr.org/12
20. Breast Histopathology Images Dataset
Data Link: https://www.kaggle.com/paultimothymooney/breast-histopathology-images
21. Youtube 8M Dataset
Data Link: https://research.google.com/youtube8m/
Join for more -> https://whatsapp.com/channel/0029VaxbzNFCxoAmYgiGTL3Z
ENJOY LEARNING ๐๐
โค4๐3
Source codes for data science projects ๐๐
1. Build chatbots:
https://dzone.com/articles/python-chatbot-project-build-your-first-python-pro
2. Credit card fraud detection:
https://www.kaggle.com/renjithmadhavan/credit-card-fraud-detection-using-python
3. Fake news detection
https://data-flair.training/blogs/advanced-python-project-detecting-fake-news/
4.Driver Drowsiness Detection
https://data-flair.training/blogs/python-project-driver-drowsiness-detection-system/
5. Recommender Systems (Movie Recommendation)
https://data-flair.training/blogs/data-science-r-movie-recommendation/
6. Sentiment Analysis
https://data-flair.training/blogs/data-science-r-sentiment-analysis-project/
7. Gender Detection & Age Prediction
https://www.pyimagesearch.com/2020/04/13/opencv-age-detection-with-deep-learning/
๐๐ก๐๐ข๐ฌ ๐๐๐๐ฅ๐ก๐๐ก๐๐๐
1. Build chatbots:
https://dzone.com/articles/python-chatbot-project-build-your-first-python-pro
2. Credit card fraud detection:
https://www.kaggle.com/renjithmadhavan/credit-card-fraud-detection-using-python
3. Fake news detection
https://data-flair.training/blogs/advanced-python-project-detecting-fake-news/
4.Driver Drowsiness Detection
https://data-flair.training/blogs/python-project-driver-drowsiness-detection-system/
5. Recommender Systems (Movie Recommendation)
https://data-flair.training/blogs/data-science-r-movie-recommendation/
6. Sentiment Analysis
https://data-flair.training/blogs/data-science-r-sentiment-analysis-project/
7. Gender Detection & Age Prediction
https://www.pyimagesearch.com/2020/04/13/opencv-age-detection-with-deep-learning/
๐๐ก๐๐ข๐ฌ ๐๐๐๐ฅ๐ก๐๐ก๐๐๐
โค4
๐ Key Skills for Aspiring Tech Specialists
๐ Data Analyst:
- Proficiency in SQL for database querying
- Advanced Excel for data manipulation
- Programming with Python or R for data analysis
- Statistical analysis to understand data trends
- Data visualization tools like Tableau or PowerBI
- Data preprocessing to clean and structure data
- Exploratory data analysis techniques
๐ง Data Scientist:
- Strong knowledge of Python and R for statistical analysis
- Machine learning for predictive modeling
- Deep understanding of mathematics and statistics
- Data wrangling to prepare data for analysis
- Big data platforms like Hadoop or Spark
- Data visualization and communication skills
- Experience with A/B testing frameworks
๐ Data Engineer:
- Expertise in SQL and NoSQL databases
- Experience with data warehousing solutions
- ETL (Extract, Transform, Load) process knowledge
- Familiarity with big data tools (e.g., Apache Spark)
- Proficient in Python, Java, or Scala
- Knowledge of cloud services like AWS, GCP, or Azure
- Understanding of data pipeline and workflow management tools
๐ค Machine Learning Engineer:
- Proficiency in Python and libraries like scikit-learn, TensorFlow
- Solid understanding of machine learning algorithms
- Experience with neural networks and deep learning frameworks
- Ability to implement models and fine-tune their parameters
- Knowledge of software engineering best practices
- Data modeling and evaluation strategies
- Strong mathematical skills, particularly in linear algebra and calculus
๐ง Deep Learning Engineer:
- Expertise in deep learning frameworks like TensorFlow or PyTorch
- Understanding of Convolutional and Recurrent Neural Networks
- Experience with GPU computing and parallel processing
- Familiarity with computer vision and natural language processing
- Ability to handle large datasets and train complex models
- Research mindset to keep up with the latest developments in deep learning
๐คฏ AI Engineer:
- Solid foundation in algorithms, logic, and mathematics
- Proficiency in programming languages like Python or C++
- Experience with AI technologies including ML, neural networks, and cognitive computing
- Understanding of AI model deployment and scaling
- Knowledge of AI ethics and responsible AI practices
- Strong problem-solving and analytical skills
๐ NLP Engineer:
- Background in linguistics and language models
- Proficiency with NLP libraries (e.g., NLTK, spaCy)
- Experience with text preprocessing and tokenization
- Understanding of sentiment analysis, text classification, and named entity recognition
- Familiarity with transformer models like BERT and GPT
- Ability to work with large text datasets and sequential data
๐ Embrace the world of data and AI, and become the architect of tomorrow's technology!
๐ Data Analyst:
- Proficiency in SQL for database querying
- Advanced Excel for data manipulation
- Programming with Python or R for data analysis
- Statistical analysis to understand data trends
- Data visualization tools like Tableau or PowerBI
- Data preprocessing to clean and structure data
- Exploratory data analysis techniques
๐ง Data Scientist:
- Strong knowledge of Python and R for statistical analysis
- Machine learning for predictive modeling
- Deep understanding of mathematics and statistics
- Data wrangling to prepare data for analysis
- Big data platforms like Hadoop or Spark
- Data visualization and communication skills
- Experience with A/B testing frameworks
๐ Data Engineer:
- Expertise in SQL and NoSQL databases
- Experience with data warehousing solutions
- ETL (Extract, Transform, Load) process knowledge
- Familiarity with big data tools (e.g., Apache Spark)
- Proficient in Python, Java, or Scala
- Knowledge of cloud services like AWS, GCP, or Azure
- Understanding of data pipeline and workflow management tools
๐ค Machine Learning Engineer:
- Proficiency in Python and libraries like scikit-learn, TensorFlow
- Solid understanding of machine learning algorithms
- Experience with neural networks and deep learning frameworks
- Ability to implement models and fine-tune their parameters
- Knowledge of software engineering best practices
- Data modeling and evaluation strategies
- Strong mathematical skills, particularly in linear algebra and calculus
๐ง Deep Learning Engineer:
- Expertise in deep learning frameworks like TensorFlow or PyTorch
- Understanding of Convolutional and Recurrent Neural Networks
- Experience with GPU computing and parallel processing
- Familiarity with computer vision and natural language processing
- Ability to handle large datasets and train complex models
- Research mindset to keep up with the latest developments in deep learning
๐คฏ AI Engineer:
- Solid foundation in algorithms, logic, and mathematics
- Proficiency in programming languages like Python or C++
- Experience with AI technologies including ML, neural networks, and cognitive computing
- Understanding of AI model deployment and scaling
- Knowledge of AI ethics and responsible AI practices
- Strong problem-solving and analytical skills
๐ NLP Engineer:
- Background in linguistics and language models
- Proficiency with NLP libraries (e.g., NLTK, spaCy)
- Experience with text preprocessing and tokenization
- Understanding of sentiment analysis, text classification, and named entity recognition
- Familiarity with transformer models like BERT and GPT
- Ability to work with large text datasets and sequential data
๐ Embrace the world of data and AI, and become the architect of tomorrow's technology!
๐3โค2
Amazon Interview Process for Data Scientist position
๐Round 1- Phone Screen round
This was a preliminary round to check my capability, projects to coding, Stats, ML, etc.
After clearing this round the technical Interview rounds started. There were 5-6 rounds (Multiple rounds in one day).
๐ ๐ฅ๐ผ๐๐ป๐ฑ ๐ฎ- ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ฟ๐ฒ๐ฎ๐ฑ๐๐ต:
In this round the interviewer tested my knowledge on different kinds of topics.
๐๐ฅ๐ผ๐๐ป๐ฑ ๐ฏ- ๐๐ฒ๐ฝ๐๐ต ๐ฅ๐ผ๐๐ป๐ฑ:
In this round the interviewers grilled deeper into 1-2 topics. I was asked questions around:
Standard ML tech, Linear Equation, Techniques, etc.
๐๐ฅ๐ผ๐๐ป๐ฑ ๐ฐ- ๐๐ผ๐ฑ๐ถ๐ป๐ด ๐ฅ๐ผ๐๐ป๐ฑ-
This was a Python coding round, which I cleared successfully.
๐๐ฅ๐ผ๐๐ป๐ฑ ๐ฑ- This was ๐๐ถ๐ฟ๐ถ๐ป๐ด ๐ ๐ฎ๐ป๐ฎ๐ด๐ฒ๐ฟ where my fitment for the team got assessed.
๐๐๐ฎ๐๐ ๐ฅ๐ผ๐๐ป๐ฑ- ๐๐ฎ๐ฟ ๐ฅ๐ฎ๐ถ๐๐ฒ๐ฟ- Very important round, I was asked heavily around Leadership principles & Employee dignity questions.
So, here are my Tips if youโre targeting any Data Science role:
-> Never make up stuff & donโt lie in your Resume.
-> Projects thoroughly study.
-> Practice SQL, DSA, Coding problem on Leetcode/Hackerank.
-> Download data from Kaggle & build EDA (Data manipulation questions are asked)
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING ๐๐
๐Round 1- Phone Screen round
This was a preliminary round to check my capability, projects to coding, Stats, ML, etc.
After clearing this round the technical Interview rounds started. There were 5-6 rounds (Multiple rounds in one day).
๐ ๐ฅ๐ผ๐๐ป๐ฑ ๐ฎ- ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ฟ๐ฒ๐ฎ๐ฑ๐๐ต:
In this round the interviewer tested my knowledge on different kinds of topics.
๐๐ฅ๐ผ๐๐ป๐ฑ ๐ฏ- ๐๐ฒ๐ฝ๐๐ต ๐ฅ๐ผ๐๐ป๐ฑ:
In this round the interviewers grilled deeper into 1-2 topics. I was asked questions around:
Standard ML tech, Linear Equation, Techniques, etc.
๐๐ฅ๐ผ๐๐ป๐ฑ ๐ฐ- ๐๐ผ๐ฑ๐ถ๐ป๐ด ๐ฅ๐ผ๐๐ป๐ฑ-
This was a Python coding round, which I cleared successfully.
๐๐ฅ๐ผ๐๐ป๐ฑ ๐ฑ- This was ๐๐ถ๐ฟ๐ถ๐ป๐ด ๐ ๐ฎ๐ป๐ฎ๐ด๐ฒ๐ฟ where my fitment for the team got assessed.
๐๐๐ฎ๐๐ ๐ฅ๐ผ๐๐ป๐ฑ- ๐๐ฎ๐ฟ ๐ฅ๐ฎ๐ถ๐๐ฒ๐ฟ- Very important round, I was asked heavily around Leadership principles & Employee dignity questions.
So, here are my Tips if youโre targeting any Data Science role:
-> Never make up stuff & donโt lie in your Resume.
-> Projects thoroughly study.
-> Practice SQL, DSA, Coding problem on Leetcode/Hackerank.
-> Download data from Kaggle & build EDA (Data manipulation questions are asked)
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING ๐๐
โค3๐1
5 Handy Tips to master Data Science โฌ๏ธ
1๏ธโฃ Begin with introductory projects that cover the fundamental concepts of data science, such as data exploration, cleaning, and visualization. These projects will help you get familiar with common data science tools and libraries like Python (Pandas, NumPy, Matplotlib), R, SQL, and Excel
2๏ธโฃ Look for publicly available datasets from sources like Kaggle, UCI Machine Learning Repository. Working with real-world data will expose you to the challenges of messy, incomplete, and heterogeneous data, which is common in practical scenarios.
3๏ธโฃ Explore various data science techniques like regression, classification, clustering, and time series analysis. Apply these techniques to different datasets and domains to gain a broader understanding of their strengths, weaknesses, and appropriate use cases.
4๏ธโฃ Work on projects that involve the entire data science lifecycle, from data collection and cleaning to model building, evaluation, and deployment. This will help you understand how different components of the data science process fit together.
5๏ธโฃ Consistent practice is key to mastering any skill. Set aside dedicated time to work on data science projects, and gradually increase the complexity and scope of your projects as you gain more experience.
1๏ธโฃ Begin with introductory projects that cover the fundamental concepts of data science, such as data exploration, cleaning, and visualization. These projects will help you get familiar with common data science tools and libraries like Python (Pandas, NumPy, Matplotlib), R, SQL, and Excel
2๏ธโฃ Look for publicly available datasets from sources like Kaggle, UCI Machine Learning Repository. Working with real-world data will expose you to the challenges of messy, incomplete, and heterogeneous data, which is common in practical scenarios.
3๏ธโฃ Explore various data science techniques like regression, classification, clustering, and time series analysis. Apply these techniques to different datasets and domains to gain a broader understanding of their strengths, weaknesses, and appropriate use cases.
4๏ธโฃ Work on projects that involve the entire data science lifecycle, from data collection and cleaning to model building, evaluation, and deployment. This will help you understand how different components of the data science process fit together.
5๏ธโฃ Consistent practice is key to mastering any skill. Set aside dedicated time to work on data science projects, and gradually increase the complexity and scope of your projects as you gain more experience.
โค2๐1