Python Projects & Resources
57K subscribers
776 photos
342 files
326 links
Perfect channel to learn Python Programming ๐Ÿ‡ฎ๐Ÿ‡ณ
Download Free Books & Courses to master Python Programming
- โœ… Free Courses
- โœ… Projects
- โœ… Pdfs
- โœ… Bootcamps
- โœ… Notes

Admin: @Coderfun
Download Telegram
If I Were to Start My Data Science Career from Scratch, Here's What I Would Do ๐Ÿ‘‡

1๏ธโƒฃ Master Advanced SQL

Foundations: Learn database structures, tables, and relationships.

Basic SQL Commands: SELECT, FROM, WHERE, ORDER BY.

Aggregations: Get hands-on with SUM, COUNT, AVG, MIN, MAX, GROUP BY, and HAVING.

JOINs: Understand LEFT, RIGHT, INNER, OUTER, and CARTESIAN joins.

Advanced Concepts: CTEs, window functions, and query optimization.

Metric Development: Build and report metrics effectively.


2๏ธโƒฃ Study Statistics & A/B Testing

Descriptive Statistics: Know your mean, median, mode, and standard deviation.

Distributions: Familiarize yourself with normal, Bernoulli, binomial, exponential, and uniform distributions.

Probability: Understand basic probability and Bayes' theorem.

Intro to ML: Start with linear regression, decision trees, and K-means clustering.

Experimentation Basics: T-tests, Z-tests, Type 1 & Type 2 errors.

A/B Testing: Design experimentsโ€”hypothesis formation, sample size calculation, and sample biases.


3๏ธโƒฃ Learn Python for Data

Data Manipulation: Use pandas for data cleaning and manipulation.

Data Visualization: Explore matplotlib and seaborn for creating visualizations.

Hypothesis Testing: Dive into scipy for statistical testing.

Basic Modeling: Practice building models with scikit-learn.


4๏ธโƒฃ Develop Product Sense

Product Management Basics: Manage projects and understand the product life cycle.

Data-Driven Strategy: Leverage data to inform decisions and measure success.

Metrics in Business: Define and evaluate metrics that matter to the business.


5๏ธโƒฃ Hone Soft Skills

Communication: Clearly explain data findings to technical and non-technical audiences.

Collaboration: Work effectively in teams.

Time Management: Prioritize and manage projects efficiently.

Self-Reflection: Regularly assess and improve your skills.


6๏ธโƒฃ Bonus: Basic Data Engineering

Data Modeling: Understand dimensional modeling and trade-offs in normalization vs. denormalization.

ETL: Set up extraction jobs, manage dependencies, clean and validate data.

Pipeline Testing: Conduct unit testing and ensure data quality throughout the pipeline.

I have curated the best interview resources to crack Data Science Interviews
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like if you need similar content ๐Ÿ˜„๐Ÿ‘
๐Ÿ‘7โค3
Complete roadmap to learn Python and Data Structures & Algorithms (DSA) in 2 months

### Week 1: Introduction to Python

Day 1-2: Basics of Python
- Python setup (installation and IDE setup)
- Basic syntax, variables, and data types
- Operators and expressions

Day 3-4: Control Structures
- Conditional statements (if, elif, else)
- Loops (for, while)

Day 5-6: Functions and Modules
- Function definitions, parameters, and return values
- Built-in functions and importing modules

Day 7: Practice Day
- Solve basic problems on platforms like HackerRank or LeetCode

### Week 2: Advanced Python Concepts

Day 8-9: Data Structures in Python
- Lists, tuples, sets, and dictionaries
- List comprehensions and generator expressions

Day 10-11: Strings and File I/O
- String manipulation and methods
- Reading from and writing to files

Day 12-13: Object-Oriented Programming (OOP)
- Classes and objects
- Inheritance, polymorphism, encapsulation

Day 14: Practice Day
- Solve intermediate problems on coding platforms

### Week 3: Introduction to Data Structures

Day 15-16: Arrays and Linked Lists
- Understanding arrays and their operations
- Singly and doubly linked lists

Day 17-18: Stacks and Queues
- Implementation and applications of stacks
- Implementation and applications of queues

Day 19-20: Recursion
- Basics of recursion and solving problems using recursion
- Recursive vs iterative solutions

Day 21: Practice Day
- Solve problems related to arrays, linked lists, stacks, and queues

### Week 4: Fundamental Algorithms

Day 22-23: Sorting Algorithms
- Bubble sort, selection sort, insertion sort
- Merge sort and quicksort

Day 24-25: Searching Algorithms
- Linear search and binary search
- Applications and complexity analysis

Day 26-27: Hashing
- Hash tables and hash functions
- Collision resolution techniques

Day 28: Practice Day
- Solve problems on sorting, searching, and hashing

### Week 5: Advanced Data Structures

Day 29-30: Trees
- Binary trees, binary search trees (BST)
- Tree traversals (in-order, pre-order, post-order)

Day 31-32: Heaps and Priority Queues
- Understanding heaps (min-heap, max-heap)
- Implementing priority queues using heaps

Day 33-34: Graphs
- Representation of graphs (adjacency matrix, adjacency list)
- Depth-first search (DFS) and breadth-first search (BFS)

Day 35: Practice Day
- Solve problems on trees, heaps, and graphs

### Week 6: Advanced Algorithms

Day 36-37: Dynamic Programming
- Introduction to dynamic programming
- Solving common DP problems (e.g., Fibonacci, knapsack)

Day 38-39: Greedy Algorithms
- Understanding greedy strategy
- Solving problems using greedy algorithms

Day 40-41: Graph Algorithms
- Dijkstraโ€™s algorithm for shortest path
- Kruskalโ€™s and Primโ€™s algorithms for minimum spanning tree

Day 42: Practice Day
- Solve problems on dynamic programming, greedy algorithms, and advanced graph algorithms

### Week 7: Problem Solving and Optimization

Day 43-44: Problem-Solving Techniques
- Backtracking, bit manipulation, and combinatorial problems

Day 45-46: Practice Competitive Programming
- Participate in contests on platforms like Codeforces or CodeChef

Day 47-48: Mock Interviews and Coding Challenges
- Simulate technical interviews
- Focus on time management and optimization

Day 49: Review and Revise
- Go through notes and previously solved problems
- Identify weak areas and work on them

### Week 8: Final Stretch and Project

Day 50-52: Build a Project
- Use your knowledge to build a substantial project in Python involving DSA concepts

Day 53-54: Code Review and Testing
- Refactor your project code
- Write tests for your project

Day 55-56: Final Practice
- Solve problems from previous contests or new challenging problems

Day 57-58: Documentation and Presentation
- Document your project and prepare a presentation or a detailed report

Day 59-60: Reflection and Future Plan
- Reflect on what you've learned
- Plan your next steps (advanced topics, more projects, etc.)

Best DSA RESOURCES: https://topmate.io/coding/886874

Credits: https://t.iss.one/free4unow_backup

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘7โค1
Top 5 data science projects for freshers

1. Predictive Analytics on a Dataset:
   - Use a dataset to predict future trends or outcomes using machine learning algorithms. This could involve predicting sales, stock prices, or any other relevant domain.

2. Customer Segmentation:
   - Analyze and segment customers based on their behavior, preferences, or demographics. This project could provide insights for targeted marketing strategies.

3. Sentiment Analysis on Social Media Data:
   - Analyze sentiment in social media data to understand public opinion on a particular topic. This project helps in mastering natural language processing (NLP) techniques.

4. Recommendation System:
   - Build a recommendation system, perhaps for movies, music, or products, using collaborative filtering or content-based filtering methods.

5. Fraud Detection:
   - Develop a fraud detection system using machine learning algorithms to identify anomalous patterns in financial transactions or any domain where fraud detection is crucial.

Free Datsets -> https://t.iss.one/DataPortfolio/2?single

These projects showcase practical application of data science skills and can be highlighted on a resume for entry-level positions.

Join @pythonspecialist for more data science projects
๐Ÿ‘4โค2
That's why I like coding Python
๐Ÿ‘14โค5๐Ÿ‘1
Python Learning Plan in 2025

|-- Week 1: Introduction to Python
|   |-- Python Basics
|   |   |-- What is Python?
|   |   |-- Installing Python
|   |   |-- Introduction to IDEs (Jupyter, VS Code)
|   |-- Setting up Python Environment
|   |   |-- Anaconda Setup
|   |   |-- Virtual Environments
|   |   |-- Basic Syntax and Data Types
|   |-- First Python Program
|   |   |-- Writing and Running Python Scripts
|   |   |-- Basic Input/Output
|   |   |-- Simple Calculations
|
|-- Week 2: Core Python Concepts
|   |-- Control Structures
|   |   |-- Conditional Statements (if, elif, else)
|   |   |-- Loops (for, while)
|   |   |-- Comprehensions
|   |-- Functions
|   |   |-- Defining Functions
|   |   |-- Function Arguments and Return Values
|   |   |-- Lambda Functions
|   |-- Modules and Packages
|   |   |-- Importing Modules
|   |   |-- Standard Library Overview
|   |   |-- Creating and Using Packages
|
|-- Week 3: Advanced Python Concepts
|   |-- Data Structures
|   |   |-- Lists, Tuples, and Sets
|   |   |-- Dictionaries
|   |   |-- Collections Module
|   |-- File Handling
|   |   |-- Reading and Writing Files
|   |   |-- Working with CSV and JSON
|   |   |-- Context Managers
|   |-- Error Handling
|   |   |-- Exceptions
|   |   |-- Try, Except, Finally
|   |   |-- Custom Exceptions
|
|-- Week 4: Object-Oriented Programming
|   |-- OOP Basics
|   |   |-- Classes and Objects
|   |   |-- Attributes and Methods
|   |   |-- Inheritance
|   |-- Advanced OOP
|   |   |-- Polymorphism
|   |   |-- Encapsulation
|   |   |-- Magic Methods and Operator Overloading
|   |-- Design Patterns
|   |   |-- Singleton
|   |   |-- Factory
|   |   |-- Observer
|
|-- Week 5: Python for Data Analysis
|   |-- NumPy
|   |   |-- Arrays and Vectorization
|   |   |-- Indexing and Slicing
|   |   |-- Mathematical Operations
|   |-- Pandas
|   |   |-- DataFrames and Series
|   |   |-- Data Cleaning and Manipulation
|   |   |-- Merging and Joining Data
|   |-- Matplotlib and Seaborn
|   |   |-- Basic Plotting
|   |   |-- Advanced Visualizations
|   |   |-- Customizing Plots
|
|-- Week 6-8: Specialized Python Libraries
|   |-- Web Development
|   |   |-- Flask Basics
|   |   |-- Django Basics
|   |-- Data Science and Machine Learning
|   |   |-- Scikit-Learn
|   |   |-- TensorFlow and Keras
|   |-- Automation and Scripting
|   |   |-- Automating Tasks with Python
|   |   |-- Web Scraping with BeautifulSoup and Scrapy
|   |-- APIs and RESTful Services
|   |   |-- Working with REST APIs
|   |   |-- Building APIs with Flask/Django
|
|-- Week 9-11: Real-world Applications and Projects
|   |-- Capstone Project
|   |   |-- Project Planning
|   |   |-- Data Collection and Preparation
|   |   |-- Building and Optimizing Models
|   |   |-- Creating and Publishing Reports
|   |-- Case Studies
|   |   |-- Business Use Cases
|   |   |-- Industry-specific Solutions
|   |-- Integration with Other Tools
|   |   |-- Python and SQL
|   |   |-- Python and Excel
|   |   |-- Python and Power BI
|
|-- Week 12: Post-Project Learning
|   |-- Python for Automation
|   |   |-- Automating Daily Tasks
|   |   |-- Scripting with Python
|   |-- Advanced Python Topics
|   |   |-- Asyncio and Concurrency
|   |   |-- Advanced Data Structures
|   |-- Continuing Education
|   |   |-- Advanced Python Techniques
|   |   |-- Community and Forums
|   |   |-- Keeping Up with Updates
|
|-- Resources and Community
|   |-- Online Courses (Coursera, edX, Udemy)
|   |-- Books (Automate the Boring Stuff, Python Crash Course)
|   |-- Python Blogs and Podcasts
|   |-- GitHub Repositories
|   |-- Python Communities (Reddit, Stack Overflow)

Here you can find essential Python Interview Resources๐Ÿ‘‡
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like this post for more resources like this ๐Ÿ‘โ™ฅ๏ธ

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
๐Ÿ‘9โค5
List Comprehension in Python
โค8๐Ÿ‘2
DATA SCIENCE IN C PROGRAMMING LANGUAGE
โค5๐Ÿ‘5๐Ÿค”1
Random Module in Python ๐Ÿ‘†
โค8