Python Projects & Resources
58K subscribers
806 photos
342 files
332 links
Perfect channel to learn Python Programming ๐Ÿ‡ฎ๐Ÿ‡ณ
Download Free Books & Courses to master Python Programming
- โœ… Free Courses
- โœ… Projects
- โœ… Pdfs
- โœ… Bootcamps
- โœ… Notes

Admin: @Coderfun
Download Telegram
Python Lists vs Sets vs Tuples
๐Ÿ‘8
Python for Data Analytics - Quick Cheatsheet with Cod e Example ๐Ÿš€

1๏ธโƒฃ Data Manipulation with Pandas

import pandas as pd  
df = pd.read_csv("data.csv")
df.to_excel("output.xlsx")
df.head()
df.info()
df.describe()
df[df["sales"] > 1000]
df[["name", "price"]]
df.fillna(0, inplace=True)
df.dropna(inplace=True)


2๏ธโƒฃ Numerical Operations with NumPy

import numpy as np  
arr = np.array([1, 2, 3, 4])
print(arr.shape)
np.mean(arr)
np.median(arr)
np.std(arr)


3๏ธโƒฃ Data Visualization with Matplotlib & Seaborn


import matplotlib.pyplot as plt  
plt.plot([1, 2, 3, 4], [10, 20, 30, 40])
plt.bar(["A", "B", "C"], [5, 15, 25])
plt.show()
import seaborn as sns
sns.heatmap(df.corr(), annot=True)
sns.boxplot(x="category", y="sales", data=df)
plt.show()


4๏ธโƒฃ Exploratory Data Analysis (EDA)

df.isnull().sum()  
df.corr()
sns.histplot(df["sales"], bins=30)
sns.boxplot(y=df["price"])


5๏ธโƒฃ Working with Databases (SQL + Python)

import sqlite3  
conn = sqlite3.connect("database.db")
df = pd.read_sql("SELECT * FROM sales", conn)
conn.close()
cursor = conn.cursor()
cursor.execute("SELECT AVG(price) FROM products")
result = cursor.fetchone()
print(result)


React with โค๏ธ for more

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
โค9๐Ÿ‘9
10 Ways to Speed Up Your Python Code

1. List Comprehensions
numbers = [x**2 for x in range(100000) if x % 2 == 0]
instead of
numbers = []
for x in range(100000):
if x % 2 == 0:
numbers.append(x**2)

2. Use the Built-In Functions
Many of Pythonโ€™s built-in functions are written in C, which makes them much faster than a pure python solution.

3. Function Calls Are Expensive
Function calls are expensive in Python. While it is often good practice to separate code into functions, there are times where you should be cautious about calling functions from inside of a loop. It is better to iterate inside a function than to iterate and call a function each iteration.

4. Lazy Module Importing
If you want to use the time.sleep() function in your code, you don't necessarily need to import the entire time package. Instead, you can just do from time import sleep and avoid the overhead of loading basically everything.

5. Take Advantage of Numpy
Numpy is a highly optimized library built with C. It is almost always faster to offload complex math to Numpy rather than relying on the Python interpreter.

6. Try Multiprocessing
Multiprocessing can bring large performance increases to a Python script, but it can be difficult to implement properly compared to other methods mentioned in this post.

7. Be Careful with Bulky Libraries
One of the advantages Python has over other programming languages is the rich selection of third-party libraries available to developers. But, what we may not always consider is the size of the library we are using as a dependency, which could actually decrease the performance of your Python code.

8. Avoid Global Variables
Python is slightly faster at retrieving local variables than global ones. It is simply best to avoid global variables when possible.

9. Try Multiple Solutions
Being able to solve a problem in multiple ways is nice. But, there is often a solution that is faster than the rest and sometimes it comes down to just using a different method or data structure.

10. Think About Your Data Structures
Searching a dictionary or set is insanely fast, but lists take time proportional to the length of the list. However, sets and dictionaries do not maintain order. If you care about the order of your data, you canโ€™t make use of dictionaries or sets.
๐Ÿ‘4โค3
5 Free Python Courses for Data Science Beginners

1๏ธโƒฃ Python for Beginners โ€“ freeCodeCamp

2๏ธโƒฃ Python โ€“ Kaggle

3๏ธโƒฃ Python Mini-Projects โ€“ freeCodeCamp

4๏ธโƒฃ Python Tutorial โ€“ W3Schools

5๏ธโƒฃ oops with Python- freeCodeCamp
๐Ÿ‘10
Loops in Python
๐Ÿ‘9๐Ÿซก1
List Slicing in Python ๐Ÿ‘†
๐Ÿ‘5๐Ÿ”ฅ2๐Ÿค”1
I have curated the list of best WhatsApp channels to learn coding & data science for FREE

Free Courses with Certificate: Free Courses With Certificate | WhatsApp Channel (https://whatsapp.com/channel/0029Vamhzk5JENy1Zg9KmO2g)

Jobs & Internship Opportunities:
https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226

Web Development: Web Development | WhatsApp Channel (https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z)

Python Free Books & Projects: Python Programming | WhatsApp Channel (https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L)

Java Resources: Java Coding | WhatsApp Channel (https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s)

Coding Interviews: Coding Interview | WhatsApp Channel (https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X)

SQL: SQL For Data Analysis | WhatsApp Channel (https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v)

Power BI: Power BI | WhatsApp Channel (https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c)

Programming Free Resources: Programming Resources | WhatsApp Channel (https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17)

Data Science Projects: Data Science Projects | WhatsApp Channel (https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y)

Learn Data Science & Machine Learning: Data Science and Machine Learning | WhatsApp Channel (https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D)

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘2
Python for Data Science
โค7๐Ÿ‘2