Python for Data Analytics - Quick Cheatsheet with Cod e Example ๐
1๏ธโฃ Data Manipulation with Pandas
2๏ธโฃ Numerical Operations with NumPy
3๏ธโฃ Data Visualization with Matplotlib & Seaborn
4๏ธโฃ Exploratory Data Analysis (EDA)
5๏ธโฃ Working with Databases (SQL + Python)
React with โค๏ธ for more
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
1๏ธโฃ Data Manipulation with Pandas
import pandas as pd
df = pd.read_csv("data.csv")
df.to_excel("output.xlsx")
df.head()
df.info()
df.describe()
df[df["sales"] > 1000]
df[["name", "price"]]
df.fillna(0, inplace=True)
df.dropna(inplace=True)
2๏ธโฃ Numerical Operations with NumPy
import numpy as np
arr = np.array([1, 2, 3, 4])
print(arr.shape)
np.mean(arr)
np.median(arr)
np.std(arr)
3๏ธโฃ Data Visualization with Matplotlib & Seaborn
import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4], [10, 20, 30, 40])
plt.bar(["A", "B", "C"], [5, 15, 25])
plt.show()
import seaborn as sns
sns.heatmap(df.corr(), annot=True)
sns.boxplot(x="category", y="sales", data=df)
plt.show()
4๏ธโฃ Exploratory Data Analysis (EDA)
df.isnull().sum()
df.corr()
sns.histplot(df["sales"], bins=30)
sns.boxplot(y=df["price"])
5๏ธโฃ Working with Databases (SQL + Python)
import sqlite3
conn = sqlite3.connect("database.db")
df = pd.read_sql("SELECT * FROM sales", conn)
conn.close()
cursor = conn.cursor()
cursor.execute("SELECT AVG(price) FROM products")
result = cursor.fetchone()
print(result)
React with โค๏ธ for more
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
โค9๐9
10 Ways to Speed Up Your Python Code
1. List Comprehensions
numbers = [x**2 for x in range(100000) if x % 2 == 0]
instead of
numbers = []
for x in range(100000):
if x % 2 == 0:
numbers.append(x**2)
2. Use the Built-In Functions
Many of Pythonโs built-in functions are written in C, which makes them much faster than a pure python solution.
3. Function Calls Are Expensive
Function calls are expensive in Python. While it is often good practice to separate code into functions, there are times where you should be cautious about calling functions from inside of a loop. It is better to iterate inside a function than to iterate and call a function each iteration.
4. Lazy Module Importing
If you want to use the time.sleep() function in your code, you don't necessarily need to import the entire time package. Instead, you can just do from time import sleep and avoid the overhead of loading basically everything.
5. Take Advantage of Numpy
Numpy is a highly optimized library built with C. It is almost always faster to offload complex math to Numpy rather than relying on the Python interpreter.
6. Try Multiprocessing
Multiprocessing can bring large performance increases to a Python script, but it can be difficult to implement properly compared to other methods mentioned in this post.
7. Be Careful with Bulky Libraries
One of the advantages Python has over other programming languages is the rich selection of third-party libraries available to developers. But, what we may not always consider is the size of the library we are using as a dependency, which could actually decrease the performance of your Python code.
8. Avoid Global Variables
Python is slightly faster at retrieving local variables than global ones. It is simply best to avoid global variables when possible.
9. Try Multiple Solutions
Being able to solve a problem in multiple ways is nice. But, there is often a solution that is faster than the rest and sometimes it comes down to just using a different method or data structure.
10. Think About Your Data Structures
Searching a dictionary or set is insanely fast, but lists take time proportional to the length of the list. However, sets and dictionaries do not maintain order. If you care about the order of your data, you canโt make use of dictionaries or sets.
1. List Comprehensions
numbers = [x**2 for x in range(100000) if x % 2 == 0]
instead of
numbers = []
for x in range(100000):
if x % 2 == 0:
numbers.append(x**2)
2. Use the Built-In Functions
Many of Pythonโs built-in functions are written in C, which makes them much faster than a pure python solution.
3. Function Calls Are Expensive
Function calls are expensive in Python. While it is often good practice to separate code into functions, there are times where you should be cautious about calling functions from inside of a loop. It is better to iterate inside a function than to iterate and call a function each iteration.
4. Lazy Module Importing
If you want to use the time.sleep() function in your code, you don't necessarily need to import the entire time package. Instead, you can just do from time import sleep and avoid the overhead of loading basically everything.
5. Take Advantage of Numpy
Numpy is a highly optimized library built with C. It is almost always faster to offload complex math to Numpy rather than relying on the Python interpreter.
6. Try Multiprocessing
Multiprocessing can bring large performance increases to a Python script, but it can be difficult to implement properly compared to other methods mentioned in this post.
7. Be Careful with Bulky Libraries
One of the advantages Python has over other programming languages is the rich selection of third-party libraries available to developers. But, what we may not always consider is the size of the library we are using as a dependency, which could actually decrease the performance of your Python code.
8. Avoid Global Variables
Python is slightly faster at retrieving local variables than global ones. It is simply best to avoid global variables when possible.
9. Try Multiple Solutions
Being able to solve a problem in multiple ways is nice. But, there is often a solution that is faster than the rest and sometimes it comes down to just using a different method or data structure.
10. Think About Your Data Structures
Searching a dictionary or set is insanely fast, but lists take time proportional to the length of the list. However, sets and dictionaries do not maintain order. If you care about the order of your data, you canโt make use of dictionaries or sets.
๐4โค3
5 Free Python Courses for Data Science Beginners
1๏ธโฃ Python for Beginners โ freeCodeCamp
2๏ธโฃ Python โ Kaggle
3๏ธโฃ Python Mini-Projects โ freeCodeCamp
4๏ธโฃ Python Tutorial โ W3Schools
5๏ธโฃ oops with Python- freeCodeCamp
1๏ธโฃ Python for Beginners โ freeCodeCamp
2๏ธโฃ Python โ Kaggle
3๏ธโฃ Python Mini-Projects โ freeCodeCamp
4๏ธโฃ Python Tutorial โ W3Schools
5๏ธโฃ oops with Python- freeCodeCamp
๐10
I have curated the list of best WhatsApp channels to learn coding & data science for FREE
Free Courses with Certificate: Free Courses With Certificate | WhatsApp Channel (https://whatsapp.com/channel/0029Vamhzk5JENy1Zg9KmO2g)
Jobs & Internship Opportunities:
https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
Web Development: Web Development | WhatsApp Channel (https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z)
Python Free Books & Projects: Python Programming | WhatsApp Channel (https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L)
Java Resources: Java Coding | WhatsApp Channel (https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s)
Coding Interviews: Coding Interview | WhatsApp Channel (https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X)
SQL: SQL For Data Analysis | WhatsApp Channel (https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v)
Power BI: Power BI | WhatsApp Channel (https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c)
Programming Free Resources: Programming Resources | WhatsApp Channel (https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17)
Data Science Projects: Data Science Projects | WhatsApp Channel (https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y)
Learn Data Science & Machine Learning: Data Science and Machine Learning | WhatsApp Channel (https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D)
ENJOY LEARNING ๐๐
Free Courses with Certificate: Free Courses With Certificate | WhatsApp Channel (https://whatsapp.com/channel/0029Vamhzk5JENy1Zg9KmO2g)
Jobs & Internship Opportunities:
https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
Web Development: Web Development | WhatsApp Channel (https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z)
Python Free Books & Projects: Python Programming | WhatsApp Channel (https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L)
Java Resources: Java Coding | WhatsApp Channel (https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s)
Coding Interviews: Coding Interview | WhatsApp Channel (https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X)
SQL: SQL For Data Analysis | WhatsApp Channel (https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v)
Power BI: Power BI | WhatsApp Channel (https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c)
Programming Free Resources: Programming Resources | WhatsApp Channel (https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17)
Data Science Projects: Data Science Projects | WhatsApp Channel (https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y)
Learn Data Science & Machine Learning: Data Science and Machine Learning | WhatsApp Channel (https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D)
ENJOY LEARNING ๐๐
๐2