โโPython Learning Courses provided by Microsoft ๐
Recently, I found out that Microsoft provides quality online courses related to Python on Microsoft Learn.
Microsoft Learn is a free online platform that provides access to a set of training courses for the acquisition and improvement of digital skills. Each course is designed as a module, each module contains different lessons and exercises. Below are the modules related to Python learning.
๐ขBeginner
1. What is Python?
2. Introduction to Python
3. Take your first steps with Python
4. Set up your Python beginner development environment with Visual Studio Code
5. Branch code execution with the if...elif...else statement in Python
6. Manipulate and format string data for display in Python
7. Perform mathematical operations on numeric data in Python
8. Iterate through code blocks by using the while statement
9. Import standard library modules to add features to Python programs
10. Create reusable functionality with functions in Python
11. Manage a sequence of data by using Python lists
12. Write basic Python in Notebooks
13. Count the number of Moon rocks by type using Python
14. Code control statements in Python
15. Introduction to Python for space exploration
16. Install coding tools for Python development
17. Discover the role of Python in space exploration
18. Crack the code and reveal a secret with Python and Visual Studio Code
19. Introduction to object-oriented programming with Python
20. Use Python basics to solve mysteries and find answers
21. Predict meteor showers by using Python and Visual Studio Code
22. Plan a Moon mission by using Python pandas
๐ Intermediate
1. Create machine learning models
2. Explore and analyze data with Python
3. Build an AI web app by using Python and Flask
4. Get started with Django
5. Architect full-stack applications and automate deployments with GitHub
#materials
Recently, I found out that Microsoft provides quality online courses related to Python on Microsoft Learn.
Microsoft Learn is a free online platform that provides access to a set of training courses for the acquisition and improvement of digital skills. Each course is designed as a module, each module contains different lessons and exercises. Below are the modules related to Python learning.
๐ขBeginner
1. What is Python?
2. Introduction to Python
3. Take your first steps with Python
4. Set up your Python beginner development environment with Visual Studio Code
5. Branch code execution with the if...elif...else statement in Python
6. Manipulate and format string data for display in Python
7. Perform mathematical operations on numeric data in Python
8. Iterate through code blocks by using the while statement
9. Import standard library modules to add features to Python programs
10. Create reusable functionality with functions in Python
11. Manage a sequence of data by using Python lists
12. Write basic Python in Notebooks
13. Count the number of Moon rocks by type using Python
14. Code control statements in Python
15. Introduction to Python for space exploration
16. Install coding tools for Python development
17. Discover the role of Python in space exploration
18. Crack the code and reveal a secret with Python and Visual Studio Code
19. Introduction to object-oriented programming with Python
20. Use Python basics to solve mysteries and find answers
21. Predict meteor showers by using Python and Visual Studio Code
22. Plan a Moon mission by using Python pandas
๐ Intermediate
1. Create machine learning models
2. Explore and analyze data with Python
3. Build an AI web app by using Python and Flask
4. Get started with Django
5. Architect full-stack applications and automate deployments with GitHub
#materials
๐11โค1
Python for Data Analytics - Quick Cheatsheet with Cod e Example ๐
1๏ธโฃ Data Manipulation with Pandas
2๏ธโฃ Numerical Operations with NumPy
3๏ธโฃ Data Visualization with Matplotlib & Seaborn
4๏ธโฃ Exploratory Data Analysis (EDA)
5๏ธโฃ Working with Databases (SQL + Python)
React with โค๏ธ for more
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
1๏ธโฃ Data Manipulation with Pandas
import pandas as pd
df = pd.read_csv("data.csv")
df.to_excel("output.xlsx")
df.head()
df.info()
df.describe()
df[df["sales"] > 1000]
df[["name", "price"]]
df.fillna(0, inplace=True)
df.dropna(inplace=True)
2๏ธโฃ Numerical Operations with NumPy
import numpy as np
arr = np.array([1, 2, 3, 4])
print(arr.shape)
np.mean(arr)
np.median(arr)
np.std(arr)
3๏ธโฃ Data Visualization with Matplotlib & Seaborn
import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4], [10, 20, 30, 40])
plt.bar(["A", "B", "C"], [5, 15, 25])
plt.show()
import seaborn as sns
sns.heatmap(df.corr(), annot=True)
sns.boxplot(x="category", y="sales", data=df)
plt.show()
4๏ธโฃ Exploratory Data Analysis (EDA)
df.isnull().sum()
df.corr()
sns.histplot(df["sales"], bins=30)
sns.boxplot(y=df["price"])
5๏ธโฃ Working with Databases (SQL + Python)
import sqlite3
conn = sqlite3.connect("database.db")
df = pd.read_sql("SELECT * FROM sales", conn)
conn.close()
cursor = conn.cursor()
cursor.execute("SELECT AVG(price) FROM products")
result = cursor.fetchone()
print(result)
React with โค๏ธ for more
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
โค9๐9
10 Ways to Speed Up Your Python Code
1. List Comprehensions
numbers = [x**2 for x in range(100000) if x % 2 == 0]
instead of
numbers = []
for x in range(100000):
if x % 2 == 0:
numbers.append(x**2)
2. Use the Built-In Functions
Many of Pythonโs built-in functions are written in C, which makes them much faster than a pure python solution.
3. Function Calls Are Expensive
Function calls are expensive in Python. While it is often good practice to separate code into functions, there are times where you should be cautious about calling functions from inside of a loop. It is better to iterate inside a function than to iterate and call a function each iteration.
4. Lazy Module Importing
If you want to use the time.sleep() function in your code, you don't necessarily need to import the entire time package. Instead, you can just do from time import sleep and avoid the overhead of loading basically everything.
5. Take Advantage of Numpy
Numpy is a highly optimized library built with C. It is almost always faster to offload complex math to Numpy rather than relying on the Python interpreter.
6. Try Multiprocessing
Multiprocessing can bring large performance increases to a Python script, but it can be difficult to implement properly compared to other methods mentioned in this post.
7. Be Careful with Bulky Libraries
One of the advantages Python has over other programming languages is the rich selection of third-party libraries available to developers. But, what we may not always consider is the size of the library we are using as a dependency, which could actually decrease the performance of your Python code.
8. Avoid Global Variables
Python is slightly faster at retrieving local variables than global ones. It is simply best to avoid global variables when possible.
9. Try Multiple Solutions
Being able to solve a problem in multiple ways is nice. But, there is often a solution that is faster than the rest and sometimes it comes down to just using a different method or data structure.
10. Think About Your Data Structures
Searching a dictionary or set is insanely fast, but lists take time proportional to the length of the list. However, sets and dictionaries do not maintain order. If you care about the order of your data, you canโt make use of dictionaries or sets.
1. List Comprehensions
numbers = [x**2 for x in range(100000) if x % 2 == 0]
instead of
numbers = []
for x in range(100000):
if x % 2 == 0:
numbers.append(x**2)
2. Use the Built-In Functions
Many of Pythonโs built-in functions are written in C, which makes them much faster than a pure python solution.
3. Function Calls Are Expensive
Function calls are expensive in Python. While it is often good practice to separate code into functions, there are times where you should be cautious about calling functions from inside of a loop. It is better to iterate inside a function than to iterate and call a function each iteration.
4. Lazy Module Importing
If you want to use the time.sleep() function in your code, you don't necessarily need to import the entire time package. Instead, you can just do from time import sleep and avoid the overhead of loading basically everything.
5. Take Advantage of Numpy
Numpy is a highly optimized library built with C. It is almost always faster to offload complex math to Numpy rather than relying on the Python interpreter.
6. Try Multiprocessing
Multiprocessing can bring large performance increases to a Python script, but it can be difficult to implement properly compared to other methods mentioned in this post.
7. Be Careful with Bulky Libraries
One of the advantages Python has over other programming languages is the rich selection of third-party libraries available to developers. But, what we may not always consider is the size of the library we are using as a dependency, which could actually decrease the performance of your Python code.
8. Avoid Global Variables
Python is slightly faster at retrieving local variables than global ones. It is simply best to avoid global variables when possible.
9. Try Multiple Solutions
Being able to solve a problem in multiple ways is nice. But, there is often a solution that is faster than the rest and sometimes it comes down to just using a different method or data structure.
10. Think About Your Data Structures
Searching a dictionary or set is insanely fast, but lists take time proportional to the length of the list. However, sets and dictionaries do not maintain order. If you care about the order of your data, you canโt make use of dictionaries or sets.
๐4โค3
5 Free Python Courses for Data Science Beginners
1๏ธโฃ Python for Beginners โ freeCodeCamp
2๏ธโฃ Python โ Kaggle
3๏ธโฃ Python Mini-Projects โ freeCodeCamp
4๏ธโฃ Python Tutorial โ W3Schools
5๏ธโฃ oops with Python- freeCodeCamp
1๏ธโฃ Python for Beginners โ freeCodeCamp
2๏ธโฃ Python โ Kaggle
3๏ธโฃ Python Mini-Projects โ freeCodeCamp
4๏ธโฃ Python Tutorial โ W3Schools
5๏ธโฃ oops with Python- freeCodeCamp
๐10