Python for Data Analysts
48K subscribers
504 photos
64 files
320 links
Find top Python resources from global universities, cool projects, and learning materials for data analytics.

For promotions: @coderfun

Useful links: heylink.me/DataAnalytics
Download Telegram
๐Ÿฏ๐Ÿฌ ๐— ๐—ผ๐˜€๐˜ ๐—–๐—ผ๐—บ๐—บ๐—ผ๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐—ค๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐—ฌ๐—ผ๐˜‚ ๐— ๐˜‚๐˜€๐˜ ๐—ž๐—ป๐—ผ๐˜„!๐Ÿ˜

Are you preparing for a Data Analytics interview?๐Ÿ—ฃ

Hiring managers often ask a mix of technical & problem-solving questions to evaluate your skills in SQL, Python, Excel, data visualization, & case studies๐ŸŽฏ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4hbmjxf

Which question do you find the toughest? Drop a comment below!โฌ‡๏ธ
๐Ÿ‘1
Python Cheatsheet โœ…
๐Ÿ‘7
๐ˆ๐ฆ๐ฉ๐จ๐ซ๐ญ๐ข๐ง๐  ๐๐ž๐œ๐ž๐ฌ๐ฌ๐š๐ซ๐ฒ ๐‹๐ข๐›๐ซ๐š๐ซ๐ข๐ž๐ฌ:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

๐‹๐จ๐š๐๐ข๐ง๐  ๐ญ๐ก๐ž ๐ƒ๐š๐ญ๐š๐ฌ๐ž๐ญ:

df = pd.read_csv('your_dataset.csv')

๐ˆ๐ง๐ข๐ญ๐ข๐š๐ฅ ๐ƒ๐š๐ญ๐š ๐ˆ๐ง๐ฌ๐ฉ๐ž๐œ๐ญ๐ข๐จ๐ง:

1- View the first few rows:
df.head()

2- Summary of the dataset:
df.info()

3- Statistical summary:
df.describe()

๐‡๐š๐ง๐๐ฅ๐ข๐ง๐  ๐Œ๐ข๐ฌ๐ฌ๐ข๐ง๐  ๐•๐š๐ฅ๐ฎ๐ž๐ฌ:

1- Identify missing values:
df.isnull().sum()

2- Visualize missing values:
sns.heatmap(df.isnull(), cbar=False, cmap='viridis')
plt.show()

๐ƒ๐š๐ญ๐š ๐•๐ข๐ฌ๐ฎ๐š๐ฅ๐ข๐ณ๐š๐ญ๐ข๐จ๐ง:

1- Histograms:
df.hist(bins=30, figsize=(20, 15))
plt.show()

2 - Box plots:
plt.figure(figsize=(10, 6))
sns.boxplot(data=df)
plt.xticks(rotation=90)
plt.show()

3- Pair plots:
sns.pairplot(df)
plt.show()

4- Correlation matrix and heatmap:
correlation_matrix = df.corr()
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.show()

๐‚๐š๐ญ๐ž๐ ๐จ๐ซ๐ข๐œ๐š๐ฅ ๐ƒ๐š๐ญ๐š ๐€๐ง๐š๐ฅ๐ฒ๐ฌ๐ข๐ฌ:
Count plots for categorical features:

plt.figure(figsize=(10, 6))
sns.countplot(x='categorical_column', data=df)
plt.show()

Python Interview Q&A: https://topmate.io/coding/898340

Like for more โค๏ธ

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘6๐Ÿ‘1
๐—ง๐—ผ๐—ฝ ๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ฌ๐—ผ๐˜‚ ๐—–๐—ฎ๐—ป ๐—˜๐—ป๐—ฟ๐—ผ๐—น๐—น ๐—œ๐—ป ๐—ง๐—ผ๐—ฑ๐—ฎ๐˜†!๐Ÿ˜

In todayโ€™s fast-paced tech industry, staying ahead requires continuous learning and upskillingโœจ๏ธ

Fortunately, ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ is offering ๐—ณ๐—ฟ๐—ฒ๐—ฒ ๐—ฐ๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฐ๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ that can help beginners and professionals enhance their ๐—ฒ๐˜…๐—ฝ๐—ฒ๐—ฟ๐˜๐—ถ๐˜€๐—ฒ ๐—ถ๐—ป ๐—ฑ๐—ฎ๐˜๐—ฎ, ๐—”๐—œ, ๐—ฆ๐—ค๐—Ÿ, ๐—ฎ๐—ป๐—ฑ ๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—•๐—œ without spending a dime!โฌ‡๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3DwqJRt

Start a career in tech, boost your resume, or improve your data skillsโœ…๏ธ
๐—ช๐—ฎ๐—ป๐˜ ๐˜๐—ผ ๐—บ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—˜๐˜…๐—ฐ๐—ฒ๐—น ๐—ถ๐—ป ๐—ท๐˜‚๐˜€๐˜ ๐Ÿณ ๐—ฑ๐—ฎ๐˜†๐˜€?

๐Ÿ“Š Here's a structured roadmap to help you go from beginner to pro in a week!

Whether you're learning formulas, functions, or data visualization, this guide covers everything step by step.

๐‹๐ข๐ง๐ค๐Ÿ‘‡ :-

https://pdlink.in/43lzybE

All The Best ๐Ÿ’ฅ
๐Ÿ‘2
Reverse a list in Python
๐Ÿ‘7โค2
๐—™๐—ฅ๐—˜๐—˜ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€! ๐Ÿ“Š๐Ÿš€

Want to master data analytics? Here are top free courses, books, and certifications to help you get started with Power BI, Tableau, Python, and Excel.

๐‹๐ข๐ง๐ค๐Ÿ‘‡
https://pdlink.in/41Fx3PW

All The Best ๐Ÿ’ฅ
๐๐ฒ๐ญ๐ก๐จ๐ง ๐ˆ๐ง๐ญ๐ž๐ซ๐ฏ๐ข๐ž๐ฐ ๐๐ซ๐ž๐ฉ:

Must practise the following questions for your next Python interview:

1. How would you handle missing values in a dataset?

2. Write a python code to merge datasets based on a common column.

3. How would you analyse the distribution of a continuous variable in dataset?

4. Write a python code to pivot an dataframe.

5. How would you handle categorical variables with many levels?

6. Write a python code to calculate the accuracy, precision, and recall of a classification model?

7. How would you handle errors when working with large datasets?

I have curated the best interview resources to crack Python Interviews ๐Ÿ‘‡๐Ÿ‘‡
https://topmate.io/coding/898340

Hope you'll like it

Like this post if you need more resources like this ๐Ÿ‘โค๏ธ
๐Ÿ‘2โค1
Data Analysis with Python: Zero to Pandas

Data Analysis with Python: Zero to Pandas" is a practical and beginner-friendly introduction to data analysis covering the basics of Python, Numpy, Pandas, Data Visualization, and Exploratory Data Analysis.

The course is self-paced and there are no deadlines. There are no prerequisites for this course.

๐Ÿ‘ŒWatch hands-on coding-focused video tutorials
๐Ÿ‘ŒPractice coding with cloud Jupyter notebooks
๐Ÿ‘ŒBuild an end-to-end real-world course project
๐Ÿ‘ŒEarn a verified certificate of accomplishment
๐Ÿ‘ŒInteract with a global community of learners


https://jovian.ai/learn/data-analysis-with-python-zero-to-pandas
๐Ÿ‘4โค1
๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜!๐Ÿ˜

Want to upskill in AI, Data Science, Web Development, or Ethical Hacking?๐Ÿ‘‹

These 7 full courses cover everything from beginner to advanced levelsโ€”and theyโ€™re all ๐Ÿญ๐Ÿฌ๐Ÿฌ% ๐—™๐—ฅ๐—˜๐—˜!๐ŸŽŠ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4bQ6FpS

These resources will help you gain in-demand skills & boost your career in 2025!๐Ÿ’ซ
๐Ÿ‘3โค2
Practice projects to consider:

1. Implement a basic search engine:
Read a set of documents and build an index of keywords. Then, implement a search function that returns a list of documents that match the query.

2. Build a recommendation system: Read a set of user-item interactions and build a recommendation system that suggests items to users based on their past behavior.

3. Create a data analysis tool: Read a large dataset and implement a tool that performs various analyses, such as calculating summary statistics, visualizing distributions, and identifying patterns and correlations.

4. Implement a graph algorithm: Study a graph algorithm such as Dijkstra's shortest path algorithm, and implement it in Python. Then, test it on real-world graphs to see how it performs.
๐Ÿ‘1
๐—ช๐—ฎ๐—ป๐˜ ๐˜๐—ผ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—”๐—œ ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜? ๐—›๐—ฒ๐—ฟ๐—ฒโ€™๐˜€ ๐—›๐—ผ๐˜„!๐Ÿ˜

Learn AI from scratch with these 6 YouTube channels! ๐ŸŽฏ

๐Ÿ’กWhether youโ€™re a beginner or an AI enthusiast, these top AI experts will guide you through AI fundamentals, deep learning, and real-world applications

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4iIxCy8

๐Ÿ“ข Start watching today and stay ahead in the AI revolution! ๐Ÿš€
๐Ÿ‘2โค1