Free Session to learn Data Analytics, Data Science & AI
👇👇
https://tracking.acciojob.com/g/PUfdDxgHR
Register fast, only for first few users
👇👇
https://tracking.acciojob.com/g/PUfdDxgHR
Register fast, only for first few users
👍1👏1
𝟯𝟬 𝗠𝗼𝘀𝘁 𝗖𝗼𝗺𝗺𝗼𝗻 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄 𝗤𝘂𝗲𝘀𝘁𝗶𝗼𝗻𝘀 𝗬𝗼𝘂 𝗠𝘂𝘀𝘁 𝗞𝗻𝗼𝘄!😍
Are you preparing for a Data Analytics interview?🗣
Hiring managers often ask a mix of technical & problem-solving questions to evaluate your skills in SQL, Python, Excel, data visualization, & case studies🎯
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4hbmjxf
Which question do you find the toughest? Drop a comment below!⬇️
Are you preparing for a Data Analytics interview?🗣
Hiring managers often ask a mix of technical & problem-solving questions to evaluate your skills in SQL, Python, Excel, data visualization, & case studies🎯
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4hbmjxf
Which question do you find the toughest? Drop a comment below!⬇️
👍1
𝐈𝐦𝐩𝐨𝐫𝐭𝐢𝐧𝐠 𝐍𝐞𝐜𝐞𝐬𝐬𝐚𝐫𝐲 𝐋𝐢𝐛𝐫𝐚𝐫𝐢𝐞𝐬:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
𝐋𝐨𝐚𝐝𝐢𝐧𝐠 𝐭𝐡𝐞 𝐃𝐚𝐭𝐚𝐬𝐞𝐭:
df = pd.read_csv('your_dataset.csv')
𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐃𝐚𝐭𝐚 𝐈𝐧𝐬𝐩𝐞𝐜𝐭𝐢𝐨𝐧:
1- View the first few rows:
df.head()
2- Summary of the dataset:
df.info()
3- Statistical summary:
df.describe()
𝐇𝐚𝐧𝐝𝐥𝐢𝐧𝐠 𝐌𝐢𝐬𝐬𝐢𝐧𝐠 𝐕𝐚𝐥𝐮𝐞𝐬:
1- Identify missing values:
df.isnull().sum()
2- Visualize missing values:
sns.heatmap(df.isnull(), cbar=False, cmap='viridis')
plt.show()
𝐃𝐚𝐭𝐚 𝐕𝐢𝐬𝐮𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧:
1- Histograms:
df.hist(bins=30, figsize=(20, 15))
plt.show()
2 - Box plots:
plt.figure(figsize=(10, 6))
sns.boxplot(data=df)
plt.xticks(rotation=90)
plt.show()
3- Pair plots:
sns.pairplot(df)
plt.show()
4- Correlation matrix and heatmap:
correlation_matrix = df.corr()
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.show()
𝐂𝐚𝐭𝐞𝐠𝐨𝐫𝐢𝐜𝐚𝐥 𝐃𝐚𝐭𝐚 𝐀𝐧𝐚𝐥𝐲𝐬𝐢𝐬:
Count plots for categorical features:
plt.figure(figsize=(10, 6))
sns.countplot(x='categorical_column', data=df)
plt.show()
Python Interview Q&A: https://topmate.io/coding/898340
Like for more ❤️
ENJOY LEARNING 👍👍
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
𝐋𝐨𝐚𝐝𝐢𝐧𝐠 𝐭𝐡𝐞 𝐃𝐚𝐭𝐚𝐬𝐞𝐭:
df = pd.read_csv('your_dataset.csv')
𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐃𝐚𝐭𝐚 𝐈𝐧𝐬𝐩𝐞𝐜𝐭𝐢𝐨𝐧:
1- View the first few rows:
df.head()
2- Summary of the dataset:
df.info()
3- Statistical summary:
df.describe()
𝐇𝐚𝐧𝐝𝐥𝐢𝐧𝐠 𝐌𝐢𝐬𝐬𝐢𝐧𝐠 𝐕𝐚𝐥𝐮𝐞𝐬:
1- Identify missing values:
df.isnull().sum()
2- Visualize missing values:
sns.heatmap(df.isnull(), cbar=False, cmap='viridis')
plt.show()
𝐃𝐚𝐭𝐚 𝐕𝐢𝐬𝐮𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧:
1- Histograms:
df.hist(bins=30, figsize=(20, 15))
plt.show()
2 - Box plots:
plt.figure(figsize=(10, 6))
sns.boxplot(data=df)
plt.xticks(rotation=90)
plt.show()
3- Pair plots:
sns.pairplot(df)
plt.show()
4- Correlation matrix and heatmap:
correlation_matrix = df.corr()
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.show()
𝐂𝐚𝐭𝐞𝐠𝐨𝐫𝐢𝐜𝐚𝐥 𝐃𝐚𝐭𝐚 𝐀𝐧𝐚𝐥𝐲𝐬𝐢𝐬:
Count plots for categorical features:
plt.figure(figsize=(10, 6))
sns.countplot(x='categorical_column', data=df)
plt.show()
Python Interview Q&A: https://topmate.io/coding/898340
Like for more ❤️
ENJOY LEARNING 👍👍
👍6👏1
𝗧𝗼𝗽 𝟱 𝗙𝗿𝗲𝗲 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗬𝗼𝘂 𝗖𝗮𝗻 𝗘𝗻𝗿𝗼𝗹𝗹 𝗜𝗻 𝗧𝗼𝗱𝗮𝘆!😍
In today’s fast-paced tech industry, staying ahead requires continuous learning and upskilling✨️
Fortunately, 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 is offering 𝗳𝗿𝗲𝗲 𝗰𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗰𝗼𝘂𝗿𝘀𝗲𝘀 that can help beginners and professionals enhance their 𝗲𝘅𝗽𝗲𝗿𝘁𝗶𝘀𝗲 𝗶𝗻 𝗱𝗮𝘁𝗮, 𝗔𝗜, 𝗦𝗤𝗟, 𝗮𝗻𝗱 𝗣𝗼𝘄𝗲𝗿 𝗕𝗜 without spending a dime!⬇️
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3DwqJRt
Start a career in tech, boost your resume, or improve your data skills✅️
In today’s fast-paced tech industry, staying ahead requires continuous learning and upskilling✨️
Fortunately, 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 is offering 𝗳𝗿𝗲𝗲 𝗰𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗰𝗼𝘂𝗿𝘀𝗲𝘀 that can help beginners and professionals enhance their 𝗲𝘅𝗽𝗲𝗿𝘁𝗶𝘀𝗲 𝗶𝗻 𝗱𝗮𝘁𝗮, 𝗔𝗜, 𝗦𝗤𝗟, 𝗮𝗻𝗱 𝗣𝗼𝘄𝗲𝗿 𝗕𝗜 without spending a dime!⬇️
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3DwqJRt
Start a career in tech, boost your resume, or improve your data skills✅️