Python for Data Analysts
47.9K subscribers
497 photos
64 files
318 links
Find top Python resources from global universities, cool projects, and learning materials for data analytics.

For promotions: @coderfun

Useful links: heylink.me/DataAnalytics
Download Telegram
Lists ๐Ÿ†š Tuples ๐Ÿ†š Dictionaries

What's the difference?

Lists are mutable.
Tuples are immutable.
Dictionaries are associative.

When should you use each?

Lists:
โŸถ When you want to add or remove elements
โŸถ When you want to sort elements
โŸถ When you want to slice elements

Tuples:
โŸถ When you want a constant object
โŸถ When you want to send multiple in a function
โŸถ When you want to return multiple from a function

Dictionaries:
โŸถ When you want to map keys to values
โŸถ When you want to loop over the keys
โŸถ When you want to validate if key exists

Now, pick your weapon of mass data analysis and become a Python pro!

Python Interview Q&A: https://topmate.io/coding/898340

Like for more โค๏ธ

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘13โค9
Here are 5 key Python libraries/ concepts that are particularly important for data analysts:

1. Pandas: Pandas is a powerful library for data manipulation and analysis in Python. It provides data structures like DataFrames and Series that make it easy to work with structured data. Pandas offers functions for reading and writing data, cleaning and transforming data, and performing data analysis tasks like filtering, grouping, and aggregating.

2. NumPy: NumPy is a fundamental package for scientific computing in Python. It provides support for large, multi-dimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays efficiently. NumPy is often used in conjunction with Pandas for numerical computations and data manipulation.

3. Matplotlib and Seaborn: Matplotlib is a popular plotting library in Python that allows you to create a wide variety of static, interactive, and animated visualizations. Seaborn is built on top of Matplotlib and provides a higher-level interface for creating attractive and informative statistical graphics. These libraries are essential for data visualization in data analysis projects.

4. Scikit-learn: Scikit-learn is a machine learning library in Python that provides simple and efficient tools for data mining and data analysis tasks. It includes a wide range of algorithms for classification, regression, clustering, dimensionality reduction, and more. Scikit-learn also offers tools for model evaluation, hyperparameter tuning, and model selection.

5. Data Cleaning and Preprocessing: Data cleaning and preprocessing are crucial steps in any data analysis project. Python offers libraries like Pandas and NumPy for handling missing values, removing duplicates, standardizing data types, scaling numerical features, encoding categorical variables, and more. Understanding how to clean and preprocess data effectively is essential for accurate analysis and modeling.

By mastering these Python concepts and libraries, data analysts can efficiently manipulate and analyze data, create insightful visualizations, apply machine learning techniques, and derive valuable insights from their datasets.

Credits: https://t.iss.one/free4unow_backup

Python Interview Q&A: https://topmate.io/coding/898340

Like for more โค๏ธ

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘20โค7
How to get job as python fresher?

1. Get Your Python Fundamentals Strong
You should have a clear understanding of Python syntax, statements, variables & operators, control structures, functions & modules, OOP concepts, exception handling, and various other concepts before going out for a Python interview.

2. Learn Python Frameworks
As a beginner, youโ€™re recommended to start with Django as it is considered the standard framework for Python by many developers. An adequate amount of experience with frameworks will not only help you to dive deeper into the Python world but will also help you to stand out among other Python freshers.

3. Build Some Relevant Projects
You can start it by building several minor projects such as Number guessing game, Hangman Game, Website Blocker, and many others. Also, you can opt to build few advanced-level projects once youโ€™ll learn several Python web frameworks and other trending technologies.

@crackingthecodinginterview

4. Get Exposure to Trending Technologies Using Python.
Python is being used with almost every latest tech trend whether it be Artificial Intelligence, Internet of Things (IOT), Cloud Computing, or any other. And getting exposure to these upcoming technologies using Python will not only make you industry-ready but will also give you an edge over others during a career opportunity.

5. Do an Internship & Grow Your Network.
You need to connect with those professionals who are already working in the same industry in which you are aspiring to get into such as Data Science, Machine learning, Web Development, etc.


Python Interview Q&A: https://topmate.io/coding/898340

Like for more โค๏ธ

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘26โค7
Python Cheat Sheet-1.pdf
1 MB
Python Cheat Sheet-1.pdf
๐Ÿ‘18
Writing Python Lists
๐Ÿ‘19โค7
Python Interview Questions for Data/Business Analysts in MNC:

Question 1:
Given a dataset in a CSV file, how would you read it into a Pandas DataFrame? And how would you handle missing values?

Question 2:
Describe the difference between a list, a tuple, and a dictionary in Python. Provide an example for each.

Question 3:
Imagine you are provided with two datasets, 'sales_data' and 'product_data', both in the form of Pandas DataFrames. How would you merge these datasets on a common column named 'ProductID'?

Question 4:
How would you handle duplicate rows in a Pandas DataFrame? Write a Python code snippet to demonstrate.

Question 5:
Describe the difference between '.iloc[] and '.loc[]' in the context of Pandas.

Question 6:
In Python's Matplotlib library, how would you plot a line chart to visualize monthly sales? Assume you have a list of months and a list of corresponding sales numbers.

Question 7:
How would you use Python to connect to a SQL database and fetch data into a Pandas DataFrame?

Question 8:
Explain the concept of list comprehensions in Python. Can you provide an example where it's useful for data analysis?

Question 9:
How would you reshape a long-format DataFrame to a wide format using Pandas? Explain with an example.

Question 10:
What are lambda functions in Python? How are they beneficial in data wrangling tasks?

Question 11:
Describe a scenario where you would use the 'groupby()' method in Pandas. How would you aggregate data after grouping?

Question 12:
You are provided with a Pandas DataFrame that contains a column with date strings. How would you convert this column to a datetime format? Additionally, how would you extract the month and year from these datetime objects?

Question 13:
Explain the purpose of the 'pivot_table' method in Pandas and describe a business scenario where it might be useful.

Question 14:
How would you handle large datasets that don't fit into memory? Are you familiar with Dask or any similar libraries?

Question 15:
In a dataset, you observe that some numerical columns are highly skewed. How can you normalize or transform these columns using Python?

Python Interview Q&A: https://topmate.io/coding/898340

Like for more โค๏ธ
๐Ÿ‘25โค7
Useful Python for data science cheat sheets ๐Ÿ‘‡
๐Ÿ‘5
Python โ€” Using reduce()

The reduce() function is a powerful tool from Python's functools module. It allows you to apply a function cumulatively to the items of a sequence, from left to right, reducing the sequence to a single value
๐Ÿ‘15
Python For Finance
โค22๐Ÿ‘10๐Ÿฅฐ1