Python Game Development Roadmap
Stage 1 - Learn Python basics (syntax, OOP).
Stage 2 - Study game physics and logic fundamentals.
Stage 3 - Use Pygame to prototype 2D games.
Stage 4 - Add input systems (controllers, keyboard, mouse).
Stage 5 - Add sound effects with PyGame Mixer.
Stage 6 - Explore OpenGL or Panda3D for 3D games.
Stage 7 - Add visual effects (shaders, lighting).
Stage 8 - Package and distribute games with tools like cx_Freeze or PyInstaller.
๐ โ Python Game Developer
Stage 1 - Learn Python basics (syntax, OOP).
Stage 2 - Study game physics and logic fundamentals.
Stage 3 - Use Pygame to prototype 2D games.
Stage 4 - Add input systems (controllers, keyboard, mouse).
Stage 5 - Add sound effects with PyGame Mixer.
Stage 6 - Explore OpenGL or Panda3D for 3D games.
Stage 7 - Add visual effects (shaders, lighting).
Stage 8 - Package and distribute games with tools like cx_Freeze or PyInstaller.
๐ โ Python Game Developer
๐๐ฒ๐ฎ๐ฟ๐ป ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐ (๐ก๐ผ ๐ฆ๐๐ฟ๐ถ๐ป๐ด๐ ๐๐๐๐ฎ๐ฐ๐ต๐ฒ๐ฑ)
๐ก๐ผ ๐ณ๐ฎ๐ป๐ฐ๐ ๐ฐ๐ผ๐๐ฟ๐๐ฒ๐, ๐ป๐ผ ๐ฐ๐ผ๐ป๐ฑ๐ถ๐๐ถ๐ผ๐ป๐, ๐ท๐๐๐ ๐ฝ๐๐ฟ๐ฒ ๐น๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด.
๐๐ฒ๐ฟ๐ฒโ๐ ๐ต๐ผ๐ ๐๐ผ ๐ฏ๐ฒ๐ฐ๐ผ๐บ๐ฒ ๐ฎ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐๐ถ๐๐ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐:
1๏ธโฃ Python Programming for Data Science โ Harvardโs CS50P
The best intro to Python for absolute beginners:
โฌ Covers loops, data structures, and practical exercises.
โฌ Designed to help you build foundational coding skills.
Link: https://cs50.harvard.edu/python/
https://t.iss.one/datasciencefun
2๏ธโฃ Statistics & Probability โ Khan Academy
Want to master probability, distributions, and hypothesis testing? This is where to start:
โฌ Clear, beginner-friendly videos.
โฌ Exercises to test your skills.
Link: https://www.khanacademy.org/math/statistics-probability
https://whatsapp.com/channel/0029Vat3Dc4KAwEcfFbNnZ3O
3๏ธโฃ Linear Algebra for Data Science โ 3Blue1Brown
โฌ Learn about matrices, vectors, and transformations.
โฌ Essential for machine learning models.
Link: https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9KzVk3AjplI5PYPxkUr
4๏ธโฃ SQL Basics โ Mode Analytics
SQL is the backbone of data manipulation. This tutorial covers:
โฌ Writing queries, joins, and filtering data.
โฌ Real-world datasets to practice.
Link: https://mode.com/sql-tutorial
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
5๏ธโฃ Data Visualization โ freeCodeCamp
Learn to create stunning visualizations using Python libraries:
โฌ Covers Matplotlib, Seaborn, and Plotly.
โฌ Step-by-step projects included.
Link: https://www.youtube.com/watch?v=JLzTJhC2DZg
https://whatsapp.com/channel/0029VaxaFzoEQIaujB31SO34
6๏ธโฃ Machine Learning Basics โ Googleโs Machine Learning Crash Course
An in-depth introduction to machine learning for beginners:
โฌ Learn supervised and unsupervised learning.
โฌ Hands-on coding with TensorFlow.
Link: https://developers.google.com/machine-learning/crash-course
7๏ธโฃ Deep Learning โ Fast.aiโs Free Course
Fast.ai makes deep learning easy and accessible:
โฌ Build neural networks with PyTorch.
โฌ Learn by coding real projects.
Link: https://course.fast.ai/
8๏ธโฃ Data Science Projects โ Kaggle
โฌ Compete in challenges to practice your skills.
โฌ Great way to build your portfolio.
Link: https://www.kaggle.com/
๐ก๐ผ ๐ณ๐ฎ๐ป๐ฐ๐ ๐ฐ๐ผ๐๐ฟ๐๐ฒ๐, ๐ป๐ผ ๐ฐ๐ผ๐ป๐ฑ๐ถ๐๐ถ๐ผ๐ป๐, ๐ท๐๐๐ ๐ฝ๐๐ฟ๐ฒ ๐น๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด.
๐๐ฒ๐ฟ๐ฒโ๐ ๐ต๐ผ๐ ๐๐ผ ๐ฏ๐ฒ๐ฐ๐ผ๐บ๐ฒ ๐ฎ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐๐ถ๐๐ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐:
1๏ธโฃ Python Programming for Data Science โ Harvardโs CS50P
The best intro to Python for absolute beginners:
โฌ Covers loops, data structures, and practical exercises.
โฌ Designed to help you build foundational coding skills.
Link: https://cs50.harvard.edu/python/
https://t.iss.one/datasciencefun
2๏ธโฃ Statistics & Probability โ Khan Academy
Want to master probability, distributions, and hypothesis testing? This is where to start:
โฌ Clear, beginner-friendly videos.
โฌ Exercises to test your skills.
Link: https://www.khanacademy.org/math/statistics-probability
https://whatsapp.com/channel/0029Vat3Dc4KAwEcfFbNnZ3O
3๏ธโฃ Linear Algebra for Data Science โ 3Blue1Brown
โฌ Learn about matrices, vectors, and transformations.
โฌ Essential for machine learning models.
Link: https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9KzVk3AjplI5PYPxkUr
4๏ธโฃ SQL Basics โ Mode Analytics
SQL is the backbone of data manipulation. This tutorial covers:
โฌ Writing queries, joins, and filtering data.
โฌ Real-world datasets to practice.
Link: https://mode.com/sql-tutorial
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
5๏ธโฃ Data Visualization โ freeCodeCamp
Learn to create stunning visualizations using Python libraries:
โฌ Covers Matplotlib, Seaborn, and Plotly.
โฌ Step-by-step projects included.
Link: https://www.youtube.com/watch?v=JLzTJhC2DZg
https://whatsapp.com/channel/0029VaxaFzoEQIaujB31SO34
6๏ธโฃ Machine Learning Basics โ Googleโs Machine Learning Crash Course
An in-depth introduction to machine learning for beginners:
โฌ Learn supervised and unsupervised learning.
โฌ Hands-on coding with TensorFlow.
Link: https://developers.google.com/machine-learning/crash-course
7๏ธโฃ Deep Learning โ Fast.aiโs Free Course
Fast.ai makes deep learning easy and accessible:
โฌ Build neural networks with PyTorch.
โฌ Learn by coding real projects.
Link: https://course.fast.ai/
8๏ธโฃ Data Science Projects โ Kaggle
โฌ Compete in challenges to practice your skills.
โฌ Great way to build your portfolio.
Link: https://www.kaggle.com/
๐5โค1
Some useful PYTHON libraries for data science
NumPy stands for Numerical Python. The most powerful feature of NumPy is n-dimensional array. This library also contains basic linear algebra functions, Fourier transforms, advanced random number capabilities and tools for integration with other low level languages like Fortran, C and C++
SciPy stands for Scientific Python. SciPy is built on NumPy. It is one of the most useful library for variety of high level science and engineering modules like discrete Fourier transform, Linear Algebra, Optimization and Sparse matrices.
Matplotlib for plotting vast variety of graphs, starting from histograms to line plots to heat plots.. You can use Pylab feature in ipython notebook (ipython notebook โpylab = inline) to use these plotting features inline. If you ignore the inline option, then pylab converts ipython environment to an environment, very similar to Matlab. You can also use Latex commands to add math to your plot.
Pandas for structured data operations and manipulations. It is extensively used for data munging and preparation. Pandas were added relatively recently to Python and have been instrumental in boosting Pythonโs usage in data scientist community.
Scikit Learn for machine learning. Built on NumPy, SciPy and matplotlib, this library contains a lot of efficient tools for machine learning and statistical modeling including classification, regression, clustering and dimensionality reduction.
Statsmodels for statistical modeling. Statsmodels is a Python module that allows users to explore data, estimate statistical models, and perform statistical tests. An extensive list of descriptive statistics, statistical tests, plotting functions, and result statistics are available for different types of data and each estimator.
Seaborn for statistical data visualization. Seaborn is a library for making attractive and informative statistical graphics in Python. It is based on matplotlib. Seaborn aims to make visualization a central part of exploring and understanding data.
Bokeh for creating interactive plots, dashboards and data applications on modern web-browsers. It empowers the user to generate elegant and concise graphics in the style of D3.js. Moreover, it has the capability of high-performance interactivity over very large or streaming datasets.
Blaze for extending the capability of Numpy and Pandas to distributed and streaming datasets. It can be used to access data from a multitude of sources including Bcolz, MongoDB, SQLAlchemy, Apache Spark, PyTables, etc. Together with Bokeh, Blaze can act as a very powerful tool for creating effective visualizations and dashboards on huge chunks of data.
Scrapy for web crawling. It is a very useful framework for getting specific patterns of data. It has the capability to start at a website home url and then dig through web-pages within the website to gather information.
SymPy for symbolic computation. It has wide-ranging capabilities from basic symbolic arithmetic to calculus, algebra, discrete mathematics and quantum physics. Another useful feature is the capability of formatting the result of the computations as LaTeX code.
Requests for accessing the web. It works similar to the the standard python library urllib2 but is much easier to code. You will find subtle differences with urllib2 but for beginners, Requests might be more convenient.
Additional libraries, you might need:
os for Operating system and file operations
networkx and igraph for graph based data manipulations
regular expressions for finding patterns in text data
BeautifulSoup for scrapping web. It is inferior to Scrapy as it will extract information from just a single webpage in a run.
NumPy stands for Numerical Python. The most powerful feature of NumPy is n-dimensional array. This library also contains basic linear algebra functions, Fourier transforms, advanced random number capabilities and tools for integration with other low level languages like Fortran, C and C++
SciPy stands for Scientific Python. SciPy is built on NumPy. It is one of the most useful library for variety of high level science and engineering modules like discrete Fourier transform, Linear Algebra, Optimization and Sparse matrices.
Matplotlib for plotting vast variety of graphs, starting from histograms to line plots to heat plots.. You can use Pylab feature in ipython notebook (ipython notebook โpylab = inline) to use these plotting features inline. If you ignore the inline option, then pylab converts ipython environment to an environment, very similar to Matlab. You can also use Latex commands to add math to your plot.
Pandas for structured data operations and manipulations. It is extensively used for data munging and preparation. Pandas were added relatively recently to Python and have been instrumental in boosting Pythonโs usage in data scientist community.
Scikit Learn for machine learning. Built on NumPy, SciPy and matplotlib, this library contains a lot of efficient tools for machine learning and statistical modeling including classification, regression, clustering and dimensionality reduction.
Statsmodels for statistical modeling. Statsmodels is a Python module that allows users to explore data, estimate statistical models, and perform statistical tests. An extensive list of descriptive statistics, statistical tests, plotting functions, and result statistics are available for different types of data and each estimator.
Seaborn for statistical data visualization. Seaborn is a library for making attractive and informative statistical graphics in Python. It is based on matplotlib. Seaborn aims to make visualization a central part of exploring and understanding data.
Bokeh for creating interactive plots, dashboards and data applications on modern web-browsers. It empowers the user to generate elegant and concise graphics in the style of D3.js. Moreover, it has the capability of high-performance interactivity over very large or streaming datasets.
Blaze for extending the capability of Numpy and Pandas to distributed and streaming datasets. It can be used to access data from a multitude of sources including Bcolz, MongoDB, SQLAlchemy, Apache Spark, PyTables, etc. Together with Bokeh, Blaze can act as a very powerful tool for creating effective visualizations and dashboards on huge chunks of data.
Scrapy for web crawling. It is a very useful framework for getting specific patterns of data. It has the capability to start at a website home url and then dig through web-pages within the website to gather information.
SymPy for symbolic computation. It has wide-ranging capabilities from basic symbolic arithmetic to calculus, algebra, discrete mathematics and quantum physics. Another useful feature is the capability of formatting the result of the computations as LaTeX code.
Requests for accessing the web. It works similar to the the standard python library urllib2 but is much easier to code. You will find subtle differences with urllib2 but for beginners, Requests might be more convenient.
Additional libraries, you might need:
os for Operating system and file operations
networkx and igraph for graph based data manipulations
regular expressions for finding patterns in text data
BeautifulSoup for scrapping web. It is inferior to Scrapy as it will extract information from just a single webpage in a run.
โค3๐2๐1
Official Python Docs
https://docs.python.org/3/
Tools:
https://docs.python-guide.org/en/latest/dev/virtualenvs/
https://www.pythonforbeginners.com/basics/python-pip-usage
Practice:
https://www.practicepython.org/
https://www.hackerrank.com
https://wiki.python.org/moin/PythonDecorators
Python GUI FAQ
https://docs.python.org/3/faq/gui.html
https://docs.python.org/3/
Tools:
https://docs.python-guide.org/en/latest/dev/virtualenvs/
https://www.pythonforbeginners.com/basics/python-pip-usage
Practice:
https://www.practicepython.org/
https://www.hackerrank.com
https://wiki.python.org/moin/PythonDecorators
Python GUI FAQ
https://docs.python.org/3/faq/gui.html
Check out the list of top 10 Python projects on GitHub given below.
1. Magenta: Explore the artist inside you with this python project. A Google Brainโs brainchild, it leverages deep learning and reinforcement learning algorithms to create drawings, music, and other similar artistic products.
2. Photon: Designing web crawlers can be fun with the Photon project. It is a fast crawler designed for open-source intelligence tools. Photon project helps you perform data crawling functions, which include extracting data from URLs, e-mails, social media accounts, XML and pdf files, and Amazon buckets.
3. Mail Pile: Want to learn some encrypting tricks? This project on GitHub can help you learn to send and receive PGP encrypted electronic mails. Powered by Bayesian classifiers, it is capable of automatic tagging and handling huge volumes of email data, all organized in a clean web interface.
4. XS Strike: XS Strike helps you design a vulnerability to check your networkโs security. It is a security suite developed to detect vulnerability attacks. XSS attacks inject malicious scripts into web pages. XSSโs features include four handwritten parsers, a payload generator, a fuzzing engine, and a fast crawler.
5. Google Images Download: It is a script that looks for keywords and phrases to optionally download the image files. All you need to do is, replicate the source code of this project to get a sense of how it works in practice.
6. Pandas Project: Pandas library is a collection of data structures that can be used for flexible data analysis and data manipulation. Compared to other libraries, its flexibility, intuitiveness, and automated data manipulation processes make it a better choice for data manipulation.
7. Xonsh: Used for designing interactive applications without the need for command-line interpreters like Unix. It is a Python-powered Shell language that commands promptly. An easily scriptable application that comes with a standard library, and various types of variables and has its own virtual environment management system.
8. Manim: The Mathematical Animation Engine, Manim, can create video explainers. Using Python 3.7, it produces animated videos, with added illustrations and display graphs. Its source code is freely available on GitHub and for tutorials and installation guides, you can refer to their 3Blue1Brown YouTube channel.
9. AI Basketball Analysis: It is an artificial intelligence application that analyses basketball shots using an object detection concept. All you need to do is upload the files or submit them as a post requests to the API. Then the OpenPose library carries out the calculations to generate the results.
10. Rebound: A great project to put Python to use in building Stackoverflow content, this tool is built on the Urwid console user interface, and solves compiler errors. Using this tool, you can learn how the Beautiful Soup package scrapes StackOverflow and how subprocesses work to find compiler errors.
1. Magenta: Explore the artist inside you with this python project. A Google Brainโs brainchild, it leverages deep learning and reinforcement learning algorithms to create drawings, music, and other similar artistic products.
2. Photon: Designing web crawlers can be fun with the Photon project. It is a fast crawler designed for open-source intelligence tools. Photon project helps you perform data crawling functions, which include extracting data from URLs, e-mails, social media accounts, XML and pdf files, and Amazon buckets.
3. Mail Pile: Want to learn some encrypting tricks? This project on GitHub can help you learn to send and receive PGP encrypted electronic mails. Powered by Bayesian classifiers, it is capable of automatic tagging and handling huge volumes of email data, all organized in a clean web interface.
4. XS Strike: XS Strike helps you design a vulnerability to check your networkโs security. It is a security suite developed to detect vulnerability attacks. XSS attacks inject malicious scripts into web pages. XSSโs features include four handwritten parsers, a payload generator, a fuzzing engine, and a fast crawler.
5. Google Images Download: It is a script that looks for keywords and phrases to optionally download the image files. All you need to do is, replicate the source code of this project to get a sense of how it works in practice.
6. Pandas Project: Pandas library is a collection of data structures that can be used for flexible data analysis and data manipulation. Compared to other libraries, its flexibility, intuitiveness, and automated data manipulation processes make it a better choice for data manipulation.
7. Xonsh: Used for designing interactive applications without the need for command-line interpreters like Unix. It is a Python-powered Shell language that commands promptly. An easily scriptable application that comes with a standard library, and various types of variables and has its own virtual environment management system.
8. Manim: The Mathematical Animation Engine, Manim, can create video explainers. Using Python 3.7, it produces animated videos, with added illustrations and display graphs. Its source code is freely available on GitHub and for tutorials and installation guides, you can refer to their 3Blue1Brown YouTube channel.
9. AI Basketball Analysis: It is an artificial intelligence application that analyses basketball shots using an object detection concept. All you need to do is upload the files or submit them as a post requests to the API. Then the OpenPose library carries out the calculations to generate the results.
10. Rebound: A great project to put Python to use in building Stackoverflow content, this tool is built on the Urwid console user interface, and solves compiler errors. Using this tool, you can learn how the Beautiful Soup package scrapes StackOverflow and how subprocesses work to find compiler errors.
๐2โค1
๐๐ข๐ฆ๐ฉ๐ฅ๐ ๐๐ฎ๐ข๐๐ ๐ญ๐จ ๐๐๐๐ซ๐ง ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ๐๐จ๐ซ ๐๐๐ญ๐ ๐๐ง๐๐ฅ๐ฒ๐ญ๐ข๐๐ฌ ๐
๐ ๐๐ก๐๐ญ ๐ข๐ฌ ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ?
Imagine you're teaching a child to recognize fruits. You show them an apple, tell them itโs an apple, and next time they know it. Thatโs what Machine Learning does! But instead of a child, itโs a computer, and instead of fruits, it learns from data.
Machine Learning is about teaching computers to learn from past data so they can make smart decisions or predictions on their own, improving over time without needing new instructions.
๐ค ๐๐ก๐ฒ ๐ข๐ฌ ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฆ๐ฉ๐จ๐ซ๐ญ๐๐ง๐ญ ๐๐จ๐ซ ๐๐๐ญ๐ ๐๐ง๐๐ฅ๐ฒ๐ญ๐ข๐๐ฌ?
Machine Learning makes data analytics super powerful. Instead of just looking at past data, it can help predict future trends, find patterns we didnโt notice, and make decisions that help businesses grow!
๐ฎ ๐๐จ๐ฐ ๐ญ๐จ ๐๐๐๐ซ๐ง ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ๐๐จ๐ซ ๐๐๐ญ๐ ๐๐ง๐๐ฅ๐ฒ๐ญ๐ข๐๐ฌ?
โ ๐๐๐๐ซ๐ง ๐๐ฒ๐ญ๐ก๐จ๐ง: Python is the most commonly used language in ML. Start by getting comfortable with basic Python, then move on to ML-specific libraries like:
๐ฉ๐๐ง๐๐๐ฌ: For data manipulation.
๐๐ฎ๐ฆ๐๐ฒ: For numerical calculations.
๐ฌ๐๐ข๐ค๐ข๐ญ-๐ฅ๐๐๐ซ๐ง: For implementing basic ML algorithms.
โ ๐๐ง๐๐๐ซ๐ฌ๐ญ๐๐ง๐ ๐ญ๐ก๐ ๐๐๐ฌ๐ข๐๐ฌ ๐จ๐ ๐๐ญ๐๐ญ๐ข๐ฌ๐ญ๐ข๐๐ฌ: ML relies heavily on concepts like probability, distributions, and hypothesis testing. Understanding basic statistics will help you grasp how models work.
โ ๐๐ซ๐๐๐ญ๐ข๐๐ ๐จ๐ง ๐๐๐๐ฅ ๐๐๐ญ๐๐ฌ๐๐ญ๐ฌ: Platforms like Kaggle offer datasets and ML competitions. Start by analyzing small datasets to understand how machine learning models make predictions.
โ ๐๐๐๐ซ๐ง ๐๐ข๐ฌ๐ฎ๐๐ฅ๐ข๐ณ๐๐ญ๐ข๐จ๐ง: Use tools like Matplotlib or Seaborn to visualize data. This will help you understand patterns in the data and how machine learning models interpret them.
โ ๐๐จ๐ซ๐ค ๐จ๐ง ๐๐ข๐ฆ๐ฉ๐ฅ๐ ๐๐ซ๐จ๐ฃ๐๐๐ญ๐ฌ: Start with basic ML projects such as:
-Predicting house prices.
-Classifying emails as spam or not spam.
-Clustering customers based on their purchasing habits.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Like if you need similar content ๐๐
๐ ๐๐ก๐๐ญ ๐ข๐ฌ ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ?
Imagine you're teaching a child to recognize fruits. You show them an apple, tell them itโs an apple, and next time they know it. Thatโs what Machine Learning does! But instead of a child, itโs a computer, and instead of fruits, it learns from data.
Machine Learning is about teaching computers to learn from past data so they can make smart decisions or predictions on their own, improving over time without needing new instructions.
๐ค ๐๐ก๐ฒ ๐ข๐ฌ ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฆ๐ฉ๐จ๐ซ๐ญ๐๐ง๐ญ ๐๐จ๐ซ ๐๐๐ญ๐ ๐๐ง๐๐ฅ๐ฒ๐ญ๐ข๐๐ฌ?
Machine Learning makes data analytics super powerful. Instead of just looking at past data, it can help predict future trends, find patterns we didnโt notice, and make decisions that help businesses grow!
๐ฎ ๐๐จ๐ฐ ๐ญ๐จ ๐๐๐๐ซ๐ง ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ๐๐จ๐ซ ๐๐๐ญ๐ ๐๐ง๐๐ฅ๐ฒ๐ญ๐ข๐๐ฌ?
โ ๐๐๐๐ซ๐ง ๐๐ฒ๐ญ๐ก๐จ๐ง: Python is the most commonly used language in ML. Start by getting comfortable with basic Python, then move on to ML-specific libraries like:
๐ฉ๐๐ง๐๐๐ฌ: For data manipulation.
๐๐ฎ๐ฆ๐๐ฒ: For numerical calculations.
๐ฌ๐๐ข๐ค๐ข๐ญ-๐ฅ๐๐๐ซ๐ง: For implementing basic ML algorithms.
โ ๐๐ง๐๐๐ซ๐ฌ๐ญ๐๐ง๐ ๐ญ๐ก๐ ๐๐๐ฌ๐ข๐๐ฌ ๐จ๐ ๐๐ญ๐๐ญ๐ข๐ฌ๐ญ๐ข๐๐ฌ: ML relies heavily on concepts like probability, distributions, and hypothesis testing. Understanding basic statistics will help you grasp how models work.
โ ๐๐ซ๐๐๐ญ๐ข๐๐ ๐จ๐ง ๐๐๐๐ฅ ๐๐๐ญ๐๐ฌ๐๐ญ๐ฌ: Platforms like Kaggle offer datasets and ML competitions. Start by analyzing small datasets to understand how machine learning models make predictions.
โ ๐๐๐๐ซ๐ง ๐๐ข๐ฌ๐ฎ๐๐ฅ๐ข๐ณ๐๐ญ๐ข๐จ๐ง: Use tools like Matplotlib or Seaborn to visualize data. This will help you understand patterns in the data and how machine learning models interpret them.
โ ๐๐จ๐ซ๐ค ๐จ๐ง ๐๐ข๐ฆ๐ฉ๐ฅ๐ ๐๐ซ๐จ๐ฃ๐๐๐ญ๐ฌ: Start with basic ML projects such as:
-Predicting house prices.
-Classifying emails as spam or not spam.
-Clustering customers based on their purchasing habits.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Like if you need similar content ๐๐
๐7โค2