Complete Syllabus for Data Analytics interview:
SQL:
1. Basic
- SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Creating and using simple databases and tables
2. Intermediate
- Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Subqueries and nested queries
- Common Table Expressions (WITH clause)
- CASE statements for conditional logic in queries
3. Advanced
- Advanced JOIN techniques (self-join, non-equi join)
- Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- optimization with indexing
- Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Basic
- Syntax, variables, data types (integers, floats, strings, booleans)
- Control structures (if-else, for and while loops)
- Basic data structures (lists, dictionaries, sets, tuples)
- Functions, lambda functions, error handling (try-except)
- Modules and packages
2. Pandas & Numpy
- Creating and manipulating DataFrames and Series
- Indexing, selecting, and filtering data
- Handling missing data (fillna, dropna)
- Data aggregation with groupby, summarizing data
- Merging, joining, and concatenating datasets
3. Basic Visualization
- Basic plotting with Matplotlib (line plots, bar plots, histograms)
- Visualization with Seaborn (scatter plots, box plots, pair plots)
- Customizing plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Basic
- Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Introduction to charts and basic data visualization
- Data sorting and filtering
- Conditional formatting
2. Intermediate
- Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- PivotTables and PivotCharts for summarizing data
- Data validation tools
- What-if analysis tools (Data Tables, Goal Seek)
3. Advanced
- Array formulas and advanced functions
- Data Model & Power Pivot
- Advanced Filter
- Slicers and Timelines in Pivot Tables
- Dynamic charts and interactive dashboards
Power BI:
1. Data Modeling
- Importing data from various sources
- Creating and managing relationships between different datasets
- Data modeling basics (star schema, snowflake schema)
2. Data Transformation
- Using Power Query for data cleaning and transformation
- Advanced data shaping techniques
- Calculated columns and measures using DAX
3. Data Visualization and Reporting - Creating interactive reports and dashboards
- Visualizations (bar, line, pie charts, maps)
- Publishing and sharing reports, scheduling data refreshes
Statistics Fundamentals: Mean, Median, Mode, Standard Deviation, Variance, Probability Distributions, Hypothesis Testing, P-values, Confidence Intervals, Correlation, Simple Linear Regression, Normal Distribution, Binomial Distribution, Poisson Distribution.
Like for more ๐โค๏ธ
Python WhatsApp Community: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
SQL:
1. Basic
- SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Creating and using simple databases and tables
2. Intermediate
- Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Subqueries and nested queries
- Common Table Expressions (WITH clause)
- CASE statements for conditional logic in queries
3. Advanced
- Advanced JOIN techniques (self-join, non-equi join)
- Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- optimization with indexing
- Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Basic
- Syntax, variables, data types (integers, floats, strings, booleans)
- Control structures (if-else, for and while loops)
- Basic data structures (lists, dictionaries, sets, tuples)
- Functions, lambda functions, error handling (try-except)
- Modules and packages
2. Pandas & Numpy
- Creating and manipulating DataFrames and Series
- Indexing, selecting, and filtering data
- Handling missing data (fillna, dropna)
- Data aggregation with groupby, summarizing data
- Merging, joining, and concatenating datasets
3. Basic Visualization
- Basic plotting with Matplotlib (line plots, bar plots, histograms)
- Visualization with Seaborn (scatter plots, box plots, pair plots)
- Customizing plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Basic
- Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Introduction to charts and basic data visualization
- Data sorting and filtering
- Conditional formatting
2. Intermediate
- Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- PivotTables and PivotCharts for summarizing data
- Data validation tools
- What-if analysis tools (Data Tables, Goal Seek)
3. Advanced
- Array formulas and advanced functions
- Data Model & Power Pivot
- Advanced Filter
- Slicers and Timelines in Pivot Tables
- Dynamic charts and interactive dashboards
Power BI:
1. Data Modeling
- Importing data from various sources
- Creating and managing relationships between different datasets
- Data modeling basics (star schema, snowflake schema)
2. Data Transformation
- Using Power Query for data cleaning and transformation
- Advanced data shaping techniques
- Calculated columns and measures using DAX
3. Data Visualization and Reporting - Creating interactive reports and dashboards
- Visualizations (bar, line, pie charts, maps)
- Publishing and sharing reports, scheduling data refreshes
Statistics Fundamentals: Mean, Median, Mode, Standard Deviation, Variance, Probability Distributions, Hypothesis Testing, P-values, Confidence Intervals, Correlation, Simple Linear Regression, Normal Distribution, Binomial Distribution, Poisson Distribution.
Like for more ๐โค๏ธ
Python WhatsApp Community: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
๐24โค6
Python Roadmap
|
|-- Fundamentals
| |-- Basics of Programming
| | |-- Introduction to Python
| | |-- Setting Up Development Environment (IDE: PyCharm, VSCode, etc.)
| |
| |-- Syntax and Structure
| | |-- Basic Syntax
| | |-- Variables and Data Types
| | |-- Operators and Expressions
|
|-- Control Structures
| |-- Conditional Statements
| | |-- If-Else Statements
| | |-- Elif Statements
| |
| |-- Loops
| | |-- For Loop
| | |-- While Loop
| |
| |-- Exception Handling
| | |-- Try-Except Block
| | |-- Finally Block
| | |-- Raise and Custom Exceptions
|
|-- Functions and Modules
| |-- Defining Functions
| | |-- Function Syntax
| | |-- Parameters and Arguments
| | |-- Return Statement
| |
| |-- Lambda Functions
| | |-- Syntax and Usage
| |
| |-- Modules and Packages
| | |-- Importing Modules
| | |-- Creating and Using Packages
|
|-- Object-Oriented Programming (OOP)
| |-- Basics of OOP
| | |-- Classes and Objects
| | |-- Methods and Constructors
| |
| |-- Inheritance
| | |-- Single and Multiple Inheritance
| | |-- Method Overriding
| |
| |-- Polymorphism
| | |-- Method Overloading (using default arguments)
| | |-- Operator Overloading
| |
| |-- Encapsulation
| | |-- Access Modifiers (Public, Private, Protected)
| | |-- Getters and Setters
| |
| |-- Abstraction
| | |-- Abstract Base Classes
| | |-- Interfaces (using ABC module)
|
|-- Advanced Python
| |-- File Handling
| | |-- Reading and Writing Files
| | |-- Working with CSV and JSON Files
| |
| |-- Iterators and Generators
| | |-- Creating Iterators
| | |-- Using Generators and Yield Statement
| |
| |-- Decorators
| | |-- Function Decorators
| | |-- Class Decorators
|
|-- Data Structures
| |-- Lists
| | |-- List Comprehensions
| | |-- Common List Methods
| |
| |-- Tuples
| | |-- Immutable Sequences
| |
| |-- Dictionaries
| | |-- Dictionary Comprehensions
| | |-- Common Dictionary Methods
| |
| |-- Sets
| | |-- Set Operations
| | |-- Set Comprehensions
|
|-- Libraries and Frameworks
| |-- Data Science
| | |-- NumPy
| | |-- Pandas
| | |-- Matplotlib
| | |-- Seaborn
| | |-- SciPy
| |
| |-- Web Development
| | |-- Flask
| | |-- Django
| |
| |-- Automation
| | |-- Selenium
| | |-- BeautifulSoup
| | |-- Scrapy
|
|-- Testing in Python
| |-- Unit Testing
| | |-- Unittest
| | |-- PyTest
| |
| |-- Mocking
| | |-- unittest.mock
| | |-- Using Mocks and Patches
|
|-- Deployment and DevOps
| |-- Containers and Microservices
| | |-- Docker (Dockerfile, Image Creation, Container Management)
| | |-- Kubernetes (Pods, Services, Deployments, Managing Python Applications on Kubernetes)
|
|-- Best Practices and Advanced Topics
| |-- Code Style
| | |-- PEP 8 Guidelines
| | |-- Code Linters (Pylint, Flake8)
| |
| |-- Performance Optimization
| | |-- Profiling and Benchmarking
| | |-- Using Cython and Numba
| |
| |-- Concurrency and Parallelism
| | |-- Threading
| | |-- Multiprocessing
| | |-- Asyncio
|
|-- Building and Distributing Packages
| |-- Creating Packages
| | |-- setuptools
| | |-- Creating environment setup
| |
| |-- Publishing Packages
| | |-- PyPI
| | |-- Versioning and Documentation
Best Resource to learn Python
Python Interview Questions with Answers
Freecodecamp Python ML Course with FREE Certificate
Python for Data Analysis
Python course for beginners by Microsoft
Scientific Computing with Python
Python course by Google
Python Free Resources
Please give us credits while sharing: -> https://t.iss.one/free4unow_backup
ENJOY LEARNING ๐๐
|
|-- Fundamentals
| |-- Basics of Programming
| | |-- Introduction to Python
| | |-- Setting Up Development Environment (IDE: PyCharm, VSCode, etc.)
| |
| |-- Syntax and Structure
| | |-- Basic Syntax
| | |-- Variables and Data Types
| | |-- Operators and Expressions
|
|-- Control Structures
| |-- Conditional Statements
| | |-- If-Else Statements
| | |-- Elif Statements
| |
| |-- Loops
| | |-- For Loop
| | |-- While Loop
| |
| |-- Exception Handling
| | |-- Try-Except Block
| | |-- Finally Block
| | |-- Raise and Custom Exceptions
|
|-- Functions and Modules
| |-- Defining Functions
| | |-- Function Syntax
| | |-- Parameters and Arguments
| | |-- Return Statement
| |
| |-- Lambda Functions
| | |-- Syntax and Usage
| |
| |-- Modules and Packages
| | |-- Importing Modules
| | |-- Creating and Using Packages
|
|-- Object-Oriented Programming (OOP)
| |-- Basics of OOP
| | |-- Classes and Objects
| | |-- Methods and Constructors
| |
| |-- Inheritance
| | |-- Single and Multiple Inheritance
| | |-- Method Overriding
| |
| |-- Polymorphism
| | |-- Method Overloading (using default arguments)
| | |-- Operator Overloading
| |
| |-- Encapsulation
| | |-- Access Modifiers (Public, Private, Protected)
| | |-- Getters and Setters
| |
| |-- Abstraction
| | |-- Abstract Base Classes
| | |-- Interfaces (using ABC module)
|
|-- Advanced Python
| |-- File Handling
| | |-- Reading and Writing Files
| | |-- Working with CSV and JSON Files
| |
| |-- Iterators and Generators
| | |-- Creating Iterators
| | |-- Using Generators and Yield Statement
| |
| |-- Decorators
| | |-- Function Decorators
| | |-- Class Decorators
|
|-- Data Structures
| |-- Lists
| | |-- List Comprehensions
| | |-- Common List Methods
| |
| |-- Tuples
| | |-- Immutable Sequences
| |
| |-- Dictionaries
| | |-- Dictionary Comprehensions
| | |-- Common Dictionary Methods
| |
| |-- Sets
| | |-- Set Operations
| | |-- Set Comprehensions
|
|-- Libraries and Frameworks
| |-- Data Science
| | |-- NumPy
| | |-- Pandas
| | |-- Matplotlib
| | |-- Seaborn
| | |-- SciPy
| |
| |-- Web Development
| | |-- Flask
| | |-- Django
| |
| |-- Automation
| | |-- Selenium
| | |-- BeautifulSoup
| | |-- Scrapy
|
|-- Testing in Python
| |-- Unit Testing
| | |-- Unittest
| | |-- PyTest
| |
| |-- Mocking
| | |-- unittest.mock
| | |-- Using Mocks and Patches
|
|-- Deployment and DevOps
| |-- Containers and Microservices
| | |-- Docker (Dockerfile, Image Creation, Container Management)
| | |-- Kubernetes (Pods, Services, Deployments, Managing Python Applications on Kubernetes)
|
|-- Best Practices and Advanced Topics
| |-- Code Style
| | |-- PEP 8 Guidelines
| | |-- Code Linters (Pylint, Flake8)
| |
| |-- Performance Optimization
| | |-- Profiling and Benchmarking
| | |-- Using Cython and Numba
| |
| |-- Concurrency and Parallelism
| | |-- Threading
| | |-- Multiprocessing
| | |-- Asyncio
|
|-- Building and Distributing Packages
| |-- Creating Packages
| | |-- setuptools
| | |-- Creating environment setup
| |
| |-- Publishing Packages
| | |-- PyPI
| | |-- Versioning and Documentation
Best Resource to learn Python
Python Interview Questions with Answers
Freecodecamp Python ML Course with FREE Certificate
Python for Data Analysis
Python course for beginners by Microsoft
Scientific Computing with Python
Python course by Google
Python Free Resources
Please give us credits while sharing: -> https://t.iss.one/free4unow_backup
ENJOY LEARNING ๐๐
๐15โค7
๐๐ข๐ฉ๐ฌ ๐๐จ๐ซ ๐๐ฒ๐ญ๐ก๐จ๐ง ๐๐จ๐๐ข๐ง๐ ๐ข๐ง ๐๐๐ญ๐ ๐๐ง๐๐ฅ๐ฒ๐ญ๐ข๐๐ฌ:
๐ ๐จ๐ฆ๐ต ๐ด๐ฐ ๐ฎ๐ข๐ฏ๐บ ๐ฒ๐ถ๐ฆ๐ด๐ต๐ช๐ฐ๐ฏ๐ด ๐ง๐ณ๐ฐ๐ฎ ๐ฅ๐ข๐ต๐ข ๐ข๐ฏ๐ข๐ญ๐บ๐ต๐ช๐ค๐ด ๐ข๐ด๐ฑ๐ช๐ณ๐ข๐ฏ๐ต๐ด ๐ข๐ฏ๐ฅ ๐ฑ๐ณ๐ฐ๐ง๐ฆ๐ด๐ด๐ช๐ฐ๐ฏ๐ข๐ญ๐ด ๐ฐ๐ฏ ๐ฉ๐ฐ๐ธ ๐ต๐ฐ ๐จ๐ข๐ช๐ฏ ๐ค๐ฐ๐ฎ๐ฎ๐ข๐ฏ๐ฅ ๐ฐ๐ง ๐๐บ๐ต๐ฉ๐ฐ๐ฏ.
๐๐๐๐๐ซ๐ง ๐๐จ๐ซ๐ ๐๐ฒ๐ญ๐ก๐จ๐ง ๐๐ข๐๐ซ๐๐ซ๐ข๐๐ฌ: Master Python libraries for data analytics, like
-pandas for dataframes,
-NumPy for numerical operations,
-Matplotlib/Seaborn for plotting,
-scikit-learn for machine learning.
๐๐๐ง๐๐๐ซ๐ฌ๐ญ๐๐ง๐ ๐๐จ๐ง๐๐๐ฉ๐ญ๐ฌ: Important concepts like list comprehensions, lambda functions, object-oriented programming, and error handling to write efficient code.
๐๐๐ฌ๐ ๐๐ซ๐จ๐๐ฅ๐๐ฆ-๐๐จ๐ฅ๐ฏ๐ข๐ง๐ ๐๐๐ญ๐ก๐จ๐๐ฌ: Apply data wrangling techniques, efficient loops, and vectorized operations in NumPy/pandas for optimized performance.
๐๐๐จ ๐๐จ๐๐ค ๐๐ซ๐จ๐ฃ๐๐๐ญ๐ฌ: Work on end-to-end Python analytics projectsโdata loading, cleaning, analysis, and visualization.
๐๐๐๐๐ซ๐ง ๐๐ซ๐จ๐ฆ ๐๐๐ฌ๐ญ ๐๐ซ๐จ๐ฃ๐๐๐ญ๐ฌ: Review your previous Python projects to see where your code can be more efficient.
๐ ๐จ๐ฆ๐ต ๐ด๐ฐ ๐ฎ๐ข๐ฏ๐บ ๐ฒ๐ถ๐ฆ๐ด๐ต๐ช๐ฐ๐ฏ๐ด ๐ง๐ณ๐ฐ๐ฎ ๐ฅ๐ข๐ต๐ข ๐ข๐ฏ๐ข๐ญ๐บ๐ต๐ช๐ค๐ด ๐ข๐ด๐ฑ๐ช๐ณ๐ข๐ฏ๐ต๐ด ๐ข๐ฏ๐ฅ ๐ฑ๐ณ๐ฐ๐ง๐ฆ๐ด๐ด๐ช๐ฐ๐ฏ๐ข๐ญ๐ด ๐ฐ๐ฏ ๐ฉ๐ฐ๐ธ ๐ต๐ฐ ๐จ๐ข๐ช๐ฏ ๐ค๐ฐ๐ฎ๐ฎ๐ข๐ฏ๐ฅ ๐ฐ๐ง ๐๐บ๐ต๐ฉ๐ฐ๐ฏ.
๐๐๐๐๐ซ๐ง ๐๐จ๐ซ๐ ๐๐ฒ๐ญ๐ก๐จ๐ง ๐๐ข๐๐ซ๐๐ซ๐ข๐๐ฌ: Master Python libraries for data analytics, like
-pandas for dataframes,
-NumPy for numerical operations,
-Matplotlib/Seaborn for plotting,
-scikit-learn for machine learning.
๐๐๐ง๐๐๐ซ๐ฌ๐ญ๐๐ง๐ ๐๐จ๐ง๐๐๐ฉ๐ญ๐ฌ: Important concepts like list comprehensions, lambda functions, object-oriented programming, and error handling to write efficient code.
๐๐๐ฌ๐ ๐๐ซ๐จ๐๐ฅ๐๐ฆ-๐๐จ๐ฅ๐ฏ๐ข๐ง๐ ๐๐๐ญ๐ก๐จ๐๐ฌ: Apply data wrangling techniques, efficient loops, and vectorized operations in NumPy/pandas for optimized performance.
๐๐๐จ ๐๐จ๐๐ค ๐๐ซ๐จ๐ฃ๐๐๐ญ๐ฌ: Work on end-to-end Python analytics projectsโdata loading, cleaning, analysis, and visualization.
๐๐๐๐๐ซ๐ง ๐๐ซ๐จ๐ฆ ๐๐๐ฌ๐ญ ๐๐ซ๐จ๐ฃ๐๐๐ญ๐ฌ: Review your previous Python projects to see where your code can be more efficient.
๐10โค5
Python for Business Success ๐ผ
Python + Data Analysis = Informed Decision-Making
Python + Automation = Streamline Your Operations
Python + Web Development = Create Your Online Presence
Python + Machine Learning = Predict Trends and Behaviors
Python + APIs = Integrate Services Seamlessly
Python + Data Visualization = Present Insights Clearly
Python + E-Commerce = Enhance Your Online Store
Python + Financial Modeling = Analyze Business Performance
Python + CRM = Manage Customer Relationships Effectively
Python + Reporting Tools = Generate Insightful Reports
Python + Inventory Management = Optimize Stock Levels
Python + Social Media Analytics = Understand Your Audience
Python + Data Analysis = Informed Decision-Making
Python + Automation = Streamline Your Operations
Python + Web Development = Create Your Online Presence
Python + Machine Learning = Predict Trends and Behaviors
Python + APIs = Integrate Services Seamlessly
Python + Data Visualization = Present Insights Clearly
Python + E-Commerce = Enhance Your Online Store
Python + Financial Modeling = Analyze Business Performance
Python + CRM = Manage Customer Relationships Effectively
Python + Reporting Tools = Generate Insightful Reports
Python + Inventory Management = Optimize Stock Levels
Python + Social Media Analytics = Understand Your Audience
๐19โค2
Python Top 40 Important Interview Questions and Answers โ
๐7โค1
Explain the features of Python / Say something about the benefits of using Python?
Python is a MUST for students and working professionals to become a great Software Engineer specially when they are working in Web Development Domain. I will list down some of the key advantages of learning Python:
โ Simple and easy to learn:
* Learning python programming language is easy and fun.
* Compared to other language, like, Java or C++, its syntax is a way lot easier.
* You also donโt have to worry about the missing semicolons (;) in the end!
* It is more expressive means that it is more understandable and readable.
* Python is a great language for the beginner-level programmers.
* It supports the development of a wide range of applications from simple text processing to WWW browsers to games.
* Easy-to-learn โ Python has few keywords, simple structure, and a clearly defined syntax. This makes it easy for Beginners to pick up the language quickly.
* Easy-to-read โ Python code is more clearly defined and readable. It's almost like plain and simple English.
* Easy-to-maintain โ Python's source code is fairly easy-to-maintain.
Features of Python
โ Python is Interpreted โ
* Python is processed at runtime by the interpreter.
* You do not need to compile your program before executing it. This is similar to PERL and PHP.
โ Python is Interactive โ
* Python has support for an interactive mode which allows interactive testing and debugging of snippets of code.
* You can open the interactive terminal also referred to as Python prompt and interact with the interpreter directly to write your programs.
โ Python is Object-Oriented โ
* Python not only supports functional and structured programming methods, but Object Oriented Principles.
โ Scripting Language โ
* Python can be used as a scripting language or it can be compliled to byte-code for building large applications.
โ Dynammic language โ
* It provides very high-level dynamic data types and supports dynamic type checking.
โ Garbage collection โ
* Garbage collection is a process where the objects that are no longer reachable are freed from memory.
* Memory management is very important while writing programs and python supports automatic garbage collection, which is one of the main problems in writing programs using C & C++.
โ Large Open Source Community โ
* Python has a large open source community and which is one of its main strength.
* And its libraries, from open source 118 thousand plus and counting.
* If you are stuck with an issue, you donโt have to worry at all because python has a huge community for help. So, if you have any queries, you can directly seek help from millions of python community members.
* A broad standard library โ Python's bulk of the library is very portable and cross-platform compatible on UNIX, Windows, and Macintosh.
* Extendable โ You can add low-level modules to the Python interpreter. These modules enable programmers to add to or customize their tools to be more efficient.
โ Cross-platform Language โ
* Python is a Cross-platform language or Portable language.
* Python can run on a wide variety of hardware platforms and has the same interface on all platforms.
* Python can run on different platforms such as Windows, Linux, Unix and Macintosh etc.
๐15
Pandas interview questions (for data analyst):
What are the basic data structures in pandas?
How do you create a DataFrame in pandas?
How do you read a CSV file in pandas?
How can you select specific columns from a DataFrame in pandas?
How do you filter rows in a DataFrame based on a condition in pandas?
How do you handle missing values in a DataFrame using pandas?
How do you merge two DataFrames in pandas?
How do you perform groupby operation in pandas?
How do you rename columns in a DataFrame using pandas?
How do you sort a DataFrame by a specific column in pandas?
How do you aggregate data using pandas?
How do you apply a function to each element in a DataFrame in pandas?
How do you perform data visualization using pandas?
How do you handle duplicate data in a DataFrame using pandas?
How do you calculate descriptive statistics for a DataFrame using pandas?
How do you set the index of a DataFrame using pandas?
How do you reset the index of a DataFrame in pandas?
How do you concatenate multiple DataFrames in pandas?
How do you pivot a DataFrame in pandas?
How do you melt a DataFrame in pandas?
How do you calculate the correlation between columns in a DataFrame using pandas?
How do you handle outliers in a DataFrame using pandas?
How do you extract unique values from a column in a DataFrame using pandas?
How do you calculate cumulative sum in a DataFrame using pandas?
How do you convert data types of columns in a DataFrame using pandas?
How do you handle datetime data in a DataFrame using pandas?
How do you resample time-series data in pandas?
How do you merge and append DataFrames with different column names in pandas?
How do you handle multi-level indexing in pandas?
How do you drop columns from a DataFrame in pandas?
How do you create a pivot table in pandas?
How do you calculate rolling statistics in pandas?
How do you concatenate strings in a DataFrame column using pandas?
How do you create a cross-tabulation in pandas?
How do you handle categorical data in pandas?
How do you calculate cumulative percentage in a DataFrame column using pandas?
How do you handle data imputation in pandas?
How do you calculate percentage change in a DataFrame column using pandas?
How do you calculate the rank of values in a DataFrame column using pandas?
How do you calculate the difference between consecutive values in a DataFrame column using pandas?
How do you drop duplicate rows based on a specific column in pandas?
How do you calculate the mean, median, and mode of a DataFrame column using pandas?
I have curated the best interview resources to crack Python Interviews ๐๐
https://topmate.io/coding/898340
Hope you'll like it
Like this post if you need more resources like this ๐โค๏ธ
What are the basic data structures in pandas?
How do you create a DataFrame in pandas?
How do you read a CSV file in pandas?
How can you select specific columns from a DataFrame in pandas?
How do you filter rows in a DataFrame based on a condition in pandas?
How do you handle missing values in a DataFrame using pandas?
How do you merge two DataFrames in pandas?
How do you perform groupby operation in pandas?
How do you rename columns in a DataFrame using pandas?
How do you sort a DataFrame by a specific column in pandas?
How do you aggregate data using pandas?
How do you apply a function to each element in a DataFrame in pandas?
How do you perform data visualization using pandas?
How do you handle duplicate data in a DataFrame using pandas?
How do you calculate descriptive statistics for a DataFrame using pandas?
How do you set the index of a DataFrame using pandas?
How do you reset the index of a DataFrame in pandas?
How do you concatenate multiple DataFrames in pandas?
How do you pivot a DataFrame in pandas?
How do you melt a DataFrame in pandas?
How do you calculate the correlation between columns in a DataFrame using pandas?
How do you handle outliers in a DataFrame using pandas?
How do you extract unique values from a column in a DataFrame using pandas?
How do you calculate cumulative sum in a DataFrame using pandas?
How do you convert data types of columns in a DataFrame using pandas?
How do you handle datetime data in a DataFrame using pandas?
How do you resample time-series data in pandas?
How do you merge and append DataFrames with different column names in pandas?
How do you handle multi-level indexing in pandas?
How do you drop columns from a DataFrame in pandas?
How do you create a pivot table in pandas?
How do you calculate rolling statistics in pandas?
How do you concatenate strings in a DataFrame column using pandas?
How do you create a cross-tabulation in pandas?
How do you handle categorical data in pandas?
How do you calculate cumulative percentage in a DataFrame column using pandas?
How do you handle data imputation in pandas?
How do you calculate percentage change in a DataFrame column using pandas?
How do you calculate the rank of values in a DataFrame column using pandas?
How do you calculate the difference between consecutive values in a DataFrame column using pandas?
How do you drop duplicate rows based on a specific column in pandas?
How do you calculate the mean, median, and mode of a DataFrame column using pandas?
I have curated the best interview resources to crack Python Interviews ๐๐
https://topmate.io/coding/898340
Hope you'll like it
Like this post if you need more resources like this ๐โค๏ธ
๐13โค5