๐๐ญ๐๐ซ๐ญ ๐๐จ๐ฎ๐ซ ๐๐๐ญ๐ ๐๐ง๐๐ฅ๐ฒ๐ญ๐ข๐๐ฌ ๐๐จ๐ฎ๐ซ๐ง๐๐ฒ โ ๐๐๐% ๐
๐ซ๐๐ & ๐๐๐ ๐ข๐ง๐ง๐๐ซ-๐
๐ซ๐ข๐๐ง๐๐ฅ๐ฒ๐
Want to dive into data analytics but donโt know where to start?๐งโ๐ปโจ๏ธ
These free Microsoft learning paths take you from analytics basics to creating dashboards, AI insights with Copilot, and end-to-end analytics with Microsoft Fabric.๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/47oQD6f
No prior experience needed โ just curiosityโ ๏ธ
Want to dive into data analytics but donโt know where to start?๐งโ๐ปโจ๏ธ
These free Microsoft learning paths take you from analytics basics to creating dashboards, AI insights with Copilot, and end-to-end analytics with Microsoft Fabric.๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/47oQD6f
No prior experience needed โ just curiosityโ ๏ธ
โค2
Most popular Python libraries for data visualization:
Matplotlib โ The most fundamental library for static charts. Best for basic visualizations like line, bar, and scatter plots. Highly customizable but requires more coding.
Seaborn โ Built on Matplotlib, it simplifies statistical data visualization with beautiful defaults. Ideal for correlation heatmaps, categorical plots, and distribution analysis.
Plotly โ Best for interactive visualizations with zooming, hovering, and real-time updates. Great for dashboards, web applications, and 3D plotting.
Bokeh โ Designed for interactive and web-based visualizations. Excellent for handling large datasets, streaming data, and integrating with Flask/Django.
Altair โ A declarative library that makes complex statistical plots easy with minimal code. Best for quick and clean data exploration.
For static charts, start with Matplotlib or Seaborn. If you need interactivity, use Plotly or Bokeh. For quick EDA, Altair is a great choice.
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
#python
Matplotlib โ The most fundamental library for static charts. Best for basic visualizations like line, bar, and scatter plots. Highly customizable but requires more coding.
Seaborn โ Built on Matplotlib, it simplifies statistical data visualization with beautiful defaults. Ideal for correlation heatmaps, categorical plots, and distribution analysis.
Plotly โ Best for interactive visualizations with zooming, hovering, and real-time updates. Great for dashboards, web applications, and 3D plotting.
Bokeh โ Designed for interactive and web-based visualizations. Excellent for handling large datasets, streaming data, and integrating with Flask/Django.
Altair โ A declarative library that makes complex statistical plots easy with minimal code. Best for quick and clean data exploration.
For static charts, start with Matplotlib or Seaborn. If you need interactivity, use Plotly or Bokeh. For quick EDA, Altair is a great choice.
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
#python
โค4
Join our WhatsApp channel for free learning lessons
๐๐
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
๐๐
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
WhatsApp.com
Python Programming | WhatsApp Channel
Python Programming WhatsApp Channel. Perfect channel to learn Python Programming ๐จโ๐ป๐ฉโ๐ป
Download Free Books & Courses to master Python Programming
- โ Free Courses
- โ Coding Projects
- โ Important Pdfs
- โ Artificial Intelligence Bootcamps
- โ Data Scienceโฆ
Download Free Books & Courses to master Python Programming
- โ Free Courses
- โ Coding Projects
- โ Important Pdfs
- โ Artificial Intelligence Bootcamps
- โ Data Scienceโฆ
โค1
๐ฎ๐ฑ+ ๐ ๐๐๐-๐๐ป๐ผ๐ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐ ๐ค๐๐ฒ๐๐๐ถ๐ผ๐ป๐ ๐๐ผ ๐๐ฎ๐ป๐ฑ ๐ฌ๐ผ๐๐ฟ ๐๐ฟ๐ฒ๐ฎ๐บ ๐๐ผ๐ฏ ๐
Breaking into Data Analytics isnโt just about knowing the tools โ itโs about answering the right questions with confidence๐งโ๐ปโจ๏ธ
Whether youโre aiming for your first role or looking to level up your career, these real interview questions will test your skills๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3JumloI
Donโt just learn โ prepare smartโ ๏ธ
Breaking into Data Analytics isnโt just about knowing the tools โ itโs about answering the right questions with confidence๐งโ๐ปโจ๏ธ
Whether youโre aiming for your first role or looking to level up your career, these real interview questions will test your skills๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3JumloI
Donโt just learn โ prepare smartโ ๏ธ
โค1
Essential Data Analysis Techniques Every Analyst Should Know
1. Descriptive Statistics: Understanding measures of central tendency (mean, median, mode) and measures of spread (variance, standard deviation) to summarize data.
2. Data Cleaning: Techniques to handle missing values, outliers, and inconsistencies in data, ensuring that the data is accurate and reliable for analysis.
3. Exploratory Data Analysis (EDA): Using visualization tools like histograms, scatter plots, and box plots to uncover patterns, trends, and relationships in the data.
4. Hypothesis Testing: The process of making inferences about a population based on sample data, including understanding p-values, confidence intervals, and statistical significance.
5. Correlation and Regression Analysis: Techniques to measure the strength of relationships between variables and predict future outcomes based on existing data.
6. Time Series Analysis: Analyzing data collected over time to identify trends, seasonality, and cyclical patterns for forecasting purposes.
7. Clustering: Grouping similar data points together based on characteristics, useful in customer segmentation and market analysis.
8. Dimensionality Reduction: Techniques like PCA (Principal Component Analysis) to reduce the number of variables in a dataset while preserving as much information as possible.
9. ANOVA (Analysis of Variance): A statistical method used to compare the means of three or more samples, determining if at least one mean is different.
10. Machine Learning Integration: Applying machine learning algorithms to enhance data analysis, enabling predictions, and automation of tasks.
Like this post if you need more ๐โค๏ธ
Hope it helps :)
1. Descriptive Statistics: Understanding measures of central tendency (mean, median, mode) and measures of spread (variance, standard deviation) to summarize data.
2. Data Cleaning: Techniques to handle missing values, outliers, and inconsistencies in data, ensuring that the data is accurate and reliable for analysis.
3. Exploratory Data Analysis (EDA): Using visualization tools like histograms, scatter plots, and box plots to uncover patterns, trends, and relationships in the data.
4. Hypothesis Testing: The process of making inferences about a population based on sample data, including understanding p-values, confidence intervals, and statistical significance.
5. Correlation and Regression Analysis: Techniques to measure the strength of relationships between variables and predict future outcomes based on existing data.
6. Time Series Analysis: Analyzing data collected over time to identify trends, seasonality, and cyclical patterns for forecasting purposes.
7. Clustering: Grouping similar data points together based on characteristics, useful in customer segmentation and market analysis.
8. Dimensionality Reduction: Techniques like PCA (Principal Component Analysis) to reduce the number of variables in a dataset while preserving as much information as possible.
9. ANOVA (Analysis of Variance): A statistical method used to compare the means of three or more samples, determining if at least one mean is different.
10. Machine Learning Integration: Applying machine learning algorithms to enhance data analysis, enabling predictions, and automation of tasks.
Like this post if you need more ๐โค๏ธ
Hope it helps :)
โค2๐1
๐๐๐ซ๐ง ๐
๐๐๐ ๐๐ซ๐๐๐ฅ๐ ๐๐๐ซ๐ญ๐ข๐๐ข๐๐๐ญ๐ข๐จ๐ง๐ฌ ๐ข๐ง ๐๐๐๐ โ ๐๐ฅ๐จ๐ฎ๐, ๐๐ & ๐๐๐ญ๐!๐
Oracleโs Race to Certification is here โ your chance to earn globally recognized certifications for FREE!๐ฅ
๐ก Choose from in-demand certifications in:
โ๏ธ Cloud
๐ค AI
๐ Data
โฆand more!
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4lx2tin
โกBut hurry โ spots are limited, and the clock is ticking!โ ๏ธ
Oracleโs Race to Certification is here โ your chance to earn globally recognized certifications for FREE!๐ฅ
๐ก Choose from in-demand certifications in:
โ๏ธ Cloud
๐ค AI
๐ Data
โฆand more!
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4lx2tin
โกBut hurry โ spots are limited, and the clock is ticking!โ ๏ธ
Complete roadmap to learn Python for data analysis
Step 1: Fundamentals of Python
1. Basics of Python Programming
- Introduction to Python
- Data types (integers, floats, strings, booleans)
- Variables and constants
- Basic operators (arithmetic, comparison, logical)
2. Control Structures
- Conditional statements (if, elif, else)
- Loops (for, while)
- List comprehensions
3. Functions and Modules
- Defining functions
- Function arguments and return values
- Importing modules
- Built-in functions vs. user-defined functions
4. Data Structures
- Lists, tuples, sets, dictionaries
- Manipulating data structures (add, remove, update elements)
Step 2: Advanced Python
1. File Handling
- Reading from and writing to files
- Working with different file formats (txt, csv, json)
2. Error Handling
- Try, except blocks
- Handling exceptions and errors gracefully
3. Object-Oriented Programming (OOP)
- Classes and objects
- Inheritance and polymorphism
- Encapsulation
Step 3: Libraries for Data Analysis
1. NumPy
- Understanding arrays and array operations
- Indexing, slicing, and iterating
- Mathematical functions and statistical operations
2. Pandas
- Series and DataFrames
- Reading and writing data (csv, excel, sql, json)
- Data cleaning and preparation
- Merging, joining, and concatenating data
- Grouping and aggregating data
3. Matplotlib and Seaborn
- Data visualization with Matplotlib
- Plotting different types of graphs (line, bar, scatter, histogram)
- Customizing plots
- Advanced visualizations with Seaborn
Step 4: Data Manipulation and Analysis
1. Data Wrangling
- Handling missing values
- Data transformation
- Feature engineering
2. Exploratory Data Analysis (EDA)
- Descriptive statistics
- Data visualization techniques
- Identifying patterns and outliers
3. Statistical Analysis
- Hypothesis testing
- Correlation and regression analysis
- Probability distributions
Step 5: Advanced Topics
1. Time Series Analysis
- Working with datetime objects
- Time series decomposition
- Forecasting models
2. Machine Learning Basics
- Introduction to machine learning
- Supervised vs. unsupervised learning
- Using Scikit-Learn for machine learning
- Building and evaluating models
3. Big Data and Cloud Computing
- Introduction to big data frameworks (e.g., Hadoop, Spark)
- Using cloud services for data analysis (e.g., AWS, Google Cloud)
Step 6: Practical Projects
1. Hands-on Projects
- Analyzing datasets from Kaggle
- Building interactive dashboards with Plotly or Dash
- Developing end-to-end data analysis projects
2. Collaborative Projects
- Participating in data science competitions
- Contributing to open-source projects
๐จโ๐ป FREE Resources to Learn & Practice Python
1. https://www.freecodecamp.org/learn/data-analysis-with-python/#data-analysis-with-python-course
2. https://www.hackerrank.com/domains/python
3. https://www.hackerearth.com/practice/python/getting-started/numbers/practice-problems/
4. https://t.iss.one/PythonInterviews
5. https://www.w3schools.com/python/python_exercises.asp
6. https://t.iss.one/pythonfreebootcamp/134
7. https://t.iss.one/pythonanalyst
8. https://pythonbasics.org/exercises/
9. https://t.iss.one/pythondevelopersindia/300
10. https://www.geeksforgeeks.org/python-programming-language/learn-python-tutorial
11. https://t.iss.one/pythonspecialist/33
Join @free4unow_backup for more free resources
ENJOY LEARNING ๐๐
Step 1: Fundamentals of Python
1. Basics of Python Programming
- Introduction to Python
- Data types (integers, floats, strings, booleans)
- Variables and constants
- Basic operators (arithmetic, comparison, logical)
2. Control Structures
- Conditional statements (if, elif, else)
- Loops (for, while)
- List comprehensions
3. Functions and Modules
- Defining functions
- Function arguments and return values
- Importing modules
- Built-in functions vs. user-defined functions
4. Data Structures
- Lists, tuples, sets, dictionaries
- Manipulating data structures (add, remove, update elements)
Step 2: Advanced Python
1. File Handling
- Reading from and writing to files
- Working with different file formats (txt, csv, json)
2. Error Handling
- Try, except blocks
- Handling exceptions and errors gracefully
3. Object-Oriented Programming (OOP)
- Classes and objects
- Inheritance and polymorphism
- Encapsulation
Step 3: Libraries for Data Analysis
1. NumPy
- Understanding arrays and array operations
- Indexing, slicing, and iterating
- Mathematical functions and statistical operations
2. Pandas
- Series and DataFrames
- Reading and writing data (csv, excel, sql, json)
- Data cleaning and preparation
- Merging, joining, and concatenating data
- Grouping and aggregating data
3. Matplotlib and Seaborn
- Data visualization with Matplotlib
- Plotting different types of graphs (line, bar, scatter, histogram)
- Customizing plots
- Advanced visualizations with Seaborn
Step 4: Data Manipulation and Analysis
1. Data Wrangling
- Handling missing values
- Data transformation
- Feature engineering
2. Exploratory Data Analysis (EDA)
- Descriptive statistics
- Data visualization techniques
- Identifying patterns and outliers
3. Statistical Analysis
- Hypothesis testing
- Correlation and regression analysis
- Probability distributions
Step 5: Advanced Topics
1. Time Series Analysis
- Working with datetime objects
- Time series decomposition
- Forecasting models
2. Machine Learning Basics
- Introduction to machine learning
- Supervised vs. unsupervised learning
- Using Scikit-Learn for machine learning
- Building and evaluating models
3. Big Data and Cloud Computing
- Introduction to big data frameworks (e.g., Hadoop, Spark)
- Using cloud services for data analysis (e.g., AWS, Google Cloud)
Step 6: Practical Projects
1. Hands-on Projects
- Analyzing datasets from Kaggle
- Building interactive dashboards with Plotly or Dash
- Developing end-to-end data analysis projects
2. Collaborative Projects
- Participating in data science competitions
- Contributing to open-source projects
๐จโ๐ป FREE Resources to Learn & Practice Python
1. https://www.freecodecamp.org/learn/data-analysis-with-python/#data-analysis-with-python-course
2. https://www.hackerrank.com/domains/python
3. https://www.hackerearth.com/practice/python/getting-started/numbers/practice-problems/
4. https://t.iss.one/PythonInterviews
5. https://www.w3schools.com/python/python_exercises.asp
6. https://t.iss.one/pythonfreebootcamp/134
7. https://t.iss.one/pythonanalyst
8. https://pythonbasics.org/exercises/
9. https://t.iss.one/pythondevelopersindia/300
10. https://www.geeksforgeeks.org/python-programming-language/learn-python-tutorial
11. https://t.iss.one/pythonspecialist/33
Join @free4unow_backup for more free resources
ENJOY LEARNING ๐๐