SQL vs Python
SQL is great for managing and querying structured databases, especially when dealing with large datasets. It excels in tasks like filtering, sorting, and aggregating data.
Python, on the other hand, is a versatile programming language used for a broader range of tasks. In the context of data, Python is powerful for data manipulation, analysis, and machine learning. It offers libraries like Pandas for data manipulation, NumPy for numerical operations, and Scikit-Learn for machine learning.
In summary, SQL is essential for efficient database querying, while Python provides a more comprehensive solution for various data-related tasks, making them often used together in data-related workflows.
SQL Practice Questions with Answers -> https://t.iss.one/learndataanalysis/596
Python Roadmap for Data Analysts -> https://t.iss.one/pythonfreebootcamp/207
SQL is great for managing and querying structured databases, especially when dealing with large datasets. It excels in tasks like filtering, sorting, and aggregating data.
Python, on the other hand, is a versatile programming language used for a broader range of tasks. In the context of data, Python is powerful for data manipulation, analysis, and machine learning. It offers libraries like Pandas for data manipulation, NumPy for numerical operations, and Scikit-Learn for machine learning.
In summary, SQL is essential for efficient database querying, while Python provides a more comprehensive solution for various data-related tasks, making them often used together in data-related workflows.
SQL Practice Questions with Answers -> https://t.iss.one/learndataanalysis/596
Python Roadmap for Data Analysts -> https://t.iss.one/pythonfreebootcamp/207
❤2👍2
Data Scientist Roadmap
|
|-- 1. Basic Foundations
| |-- a. Mathematics
| | |-- i. Linear Algebra
| | |-- ii. Calculus
| | |-- iii. Probability
| | `-- iv. Statistics
| |
| |-- b. Programming
| | |-- i. Python
| | | |-- 1. Syntax and Basic Concepts
| | | |-- 2. Data Structures
| | | |-- 3. Control Structures
| | | |-- 4. Functions
| | | `-- 5. Object-Oriented Programming
| | |
| | `-- ii. R (optional, based on preference)
| |
| |-- c. Data Manipulation
| | |-- i. Numpy (Python)
| | |-- ii. Pandas (Python)
| | `-- iii. Dplyr (R)
| |
| `-- d. Data Visualization
| |-- i. Matplotlib (Python)
| |-- ii. Seaborn (Python)
| `-- iii. ggplot2 (R)
|
|-- 2. Data Exploration and Preprocessing
| |-- a. Exploratory Data Analysis (EDA)
| |-- b. Feature Engineering
| |-- c. Data Cleaning
| |-- d. Handling Missing Data
| `-- e. Data Scaling and Normalization
|
|-- 3. Machine Learning
| |-- a. Supervised Learning
| | |-- i. Regression
| | | |-- 1. Linear Regression
| | | `-- 2. Polynomial Regression
| | |
| | `-- ii. Classification
| | |-- 1. Logistic Regression
| | |-- 2. k-Nearest Neighbors
| | |-- 3. Support Vector Machines
| | |-- 4. Decision Trees
| | `-- 5. Random Forest
| |
| |-- b. Unsupervised Learning
| | |-- i. Clustering
| | | |-- 1. K-means
| | | |-- 2. DBSCAN
| | | `-- 3. Hierarchical Clustering
| | |
| | `-- ii. Dimensionality Reduction
| | |-- 1. Principal Component Analysis (PCA)
| | |-- 2. t-Distributed Stochastic Neighbor Embedding (t-SNE)
| | `-- 3. Linear Discriminant Analysis (LDA)
| |
| |-- c. Reinforcement Learning
| |-- d. Model Evaluation and Validation
| | |-- i. Cross-validation
| | |-- ii. Hyperparameter Tuning
| | `-- iii. Model Selection
| |
| `-- e. ML Libraries and Frameworks
| |-- i. Scikit-learn (Python)
| |-- ii. TensorFlow (Python)
| |-- iii. Keras (Python)
| `-- iv. PyTorch (Python)
|
|-- 4. Deep Learning
| |-- a. Neural Networks
| | |-- i. Perceptron
| | `-- ii. Multi-Layer Perceptron
| |
| |-- b. Convolutional Neural Networks (CNNs)
| | |-- i. Image Classification
| | |-- ii. Object Detection
| | `-- iii. Image Segmentation
| |
| |-- c. Recurrent Neural Networks (RNNs)
| | |-- i. Sequence-to-Sequence Models
| | |-- ii. Text Classification
| | `-- iii. Sentiment Analysis
| |
| |-- d. Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU)
| | |-- i. Time Series Forecasting
| | `-- ii. Language Modeling
| |
| `-- e. Generative Adversarial Networks (GANs)
| |-- i. Image Synthesis
| |-- ii. Style Transfer
| `-- iii. Data Augmentation
|
|-- 5. Big Data Technologies
| |-- a. Hadoop
| | |-- i. HDFS
| | `-- ii. MapReduce
| |
| |-- b. Spark
| | |-- i. RDDs
| | |-- ii. DataFrames
| | `-- iii. MLlib
| |
| `-- c. NoSQL Databases
| |-- i. MongoDB
| |-- ii. Cassandra
| |-- iii. HBase
| `-- iv. Couchbase
|
|-- 6. Data Visualization and Reporting
| |-- a. Dashboarding Tools
| | |-- i. Tableau
| | |-- ii. Power BI
| | |-- iii. Dash (Python)
| | `-- iv. Shiny (R)
| |
| |-- b. Storytelling with Data
| `-- c. Effective Communication
|
|-- 7. Domain Knowledge and Soft Skills
| |-- a. Industry-specific Knowledge
| |-- b. Problem-solving
| |-- c. Communication Skills
| |-- d. Time Management
| `-- e. Teamwork
|
`-- 8. Staying Updated and Continuous Learning
|-- a. Online Courses
|-- b. Books and Research Papers
|-- c. Blogs and Podcasts
|-- d. Conferences and Workshops
`-- e. Networking and Community Engagement
|
|-- 1. Basic Foundations
| |-- a. Mathematics
| | |-- i. Linear Algebra
| | |-- ii. Calculus
| | |-- iii. Probability
| | `-- iv. Statistics
| |
| |-- b. Programming
| | |-- i. Python
| | | |-- 1. Syntax and Basic Concepts
| | | |-- 2. Data Structures
| | | |-- 3. Control Structures
| | | |-- 4. Functions
| | | `-- 5. Object-Oriented Programming
| | |
| | `-- ii. R (optional, based on preference)
| |
| |-- c. Data Manipulation
| | |-- i. Numpy (Python)
| | |-- ii. Pandas (Python)
| | `-- iii. Dplyr (R)
| |
| `-- d. Data Visualization
| |-- i. Matplotlib (Python)
| |-- ii. Seaborn (Python)
| `-- iii. ggplot2 (R)
|
|-- 2. Data Exploration and Preprocessing
| |-- a. Exploratory Data Analysis (EDA)
| |-- b. Feature Engineering
| |-- c. Data Cleaning
| |-- d. Handling Missing Data
| `-- e. Data Scaling and Normalization
|
|-- 3. Machine Learning
| |-- a. Supervised Learning
| | |-- i. Regression
| | | |-- 1. Linear Regression
| | | `-- 2. Polynomial Regression
| | |
| | `-- ii. Classification
| | |-- 1. Logistic Regression
| | |-- 2. k-Nearest Neighbors
| | |-- 3. Support Vector Machines
| | |-- 4. Decision Trees
| | `-- 5. Random Forest
| |
| |-- b. Unsupervised Learning
| | |-- i. Clustering
| | | |-- 1. K-means
| | | |-- 2. DBSCAN
| | | `-- 3. Hierarchical Clustering
| | |
| | `-- ii. Dimensionality Reduction
| | |-- 1. Principal Component Analysis (PCA)
| | |-- 2. t-Distributed Stochastic Neighbor Embedding (t-SNE)
| | `-- 3. Linear Discriminant Analysis (LDA)
| |
| |-- c. Reinforcement Learning
| |-- d. Model Evaluation and Validation
| | |-- i. Cross-validation
| | |-- ii. Hyperparameter Tuning
| | `-- iii. Model Selection
| |
| `-- e. ML Libraries and Frameworks
| |-- i. Scikit-learn (Python)
| |-- ii. TensorFlow (Python)
| |-- iii. Keras (Python)
| `-- iv. PyTorch (Python)
|
|-- 4. Deep Learning
| |-- a. Neural Networks
| | |-- i. Perceptron
| | `-- ii. Multi-Layer Perceptron
| |
| |-- b. Convolutional Neural Networks (CNNs)
| | |-- i. Image Classification
| | |-- ii. Object Detection
| | `-- iii. Image Segmentation
| |
| |-- c. Recurrent Neural Networks (RNNs)
| | |-- i. Sequence-to-Sequence Models
| | |-- ii. Text Classification
| | `-- iii. Sentiment Analysis
| |
| |-- d. Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU)
| | |-- i. Time Series Forecasting
| | `-- ii. Language Modeling
| |
| `-- e. Generative Adversarial Networks (GANs)
| |-- i. Image Synthesis
| |-- ii. Style Transfer
| `-- iii. Data Augmentation
|
|-- 5. Big Data Technologies
| |-- a. Hadoop
| | |-- i. HDFS
| | `-- ii. MapReduce
| |
| |-- b. Spark
| | |-- i. RDDs
| | |-- ii. DataFrames
| | `-- iii. MLlib
| |
| `-- c. NoSQL Databases
| |-- i. MongoDB
| |-- ii. Cassandra
| |-- iii. HBase
| `-- iv. Couchbase
|
|-- 6. Data Visualization and Reporting
| |-- a. Dashboarding Tools
| | |-- i. Tableau
| | |-- ii. Power BI
| | |-- iii. Dash (Python)
| | `-- iv. Shiny (R)
| |
| |-- b. Storytelling with Data
| `-- c. Effective Communication
|
|-- 7. Domain Knowledge and Soft Skills
| |-- a. Industry-specific Knowledge
| |-- b. Problem-solving
| |-- c. Communication Skills
| |-- d. Time Management
| `-- e. Teamwork
|
`-- 8. Staying Updated and Continuous Learning
|-- a. Online Courses
|-- b. Books and Research Papers
|-- c. Blogs and Podcasts
|-- d. Conferences and Workshops
`-- e. Networking and Community Engagement
👍9
We have the Key to unlock AI-Powered Data Skills!
We have got some news for College grads & pros:
Level up with PW Skills' Data Analytics & Data Science with Gen AI course!
✅ Real-world projects
✅ Professional instructors
✅ Flexible learning
✅ Job Assistance
Ready for a data career boost? ➡️
Click Here for Data Science with Generative AI Course:
https://shorturl.at/j4lTD
Click Here for Data Analytics Course:
https://shorturl.at/7nrE5
We have got some news for College grads & pros:
Level up with PW Skills' Data Analytics & Data Science with Gen AI course!
✅ Real-world projects
✅ Professional instructors
✅ Flexible learning
✅ Job Assistance
Ready for a data career boost? ➡️
Click Here for Data Science with Generative AI Course:
https://shorturl.at/j4lTD
Click Here for Data Analytics Course:
https://shorturl.at/7nrE5
👍1
Python Variables: How to Define/Declare String Variable Types
What is a Variable in Python?
A Python variable is a reserved memory location to store values. In other words, a variable in a python program gives data to the computer for processing.
Python Variable Types
Every value in Python has a datatype. Different data types in Python are Numbers, List, Tuple, Strings, Dictionary, etc. Variables in Python can be declared by any name or even alphabets like a, aa, abc, etc.
How to Declare and use a Variable
Let see an example. We will define variable in Python and declare it as “a” and print it.
What is a Variable in Python?
A Python variable is a reserved memory location to store values. In other words, a variable in a python program gives data to the computer for processing.
Python Variable Types
Every value in Python has a datatype. Different data types in Python are Numbers, List, Tuple, Strings, Dictionary, etc. Variables in Python can be declared by any name or even alphabets like a, aa, abc, etc.
How to Declare and use a Variable
Let see an example. We will define variable in Python and declare it as “a” and print it.
1 a=100
2 print (a)
👍2
Python Data Science Handbook
Python Data Science Handbook: full text in Jupyter Notebooks. This repository contains the entire Python Data Science Handbook, in the form of (free!) Jupyter notebooks.
Creator: Jake Vanderplas
Stars⭐️: 39k
Fork: 17.1K
Repo: https://github.com/jakevdp/PythonDataScienceHandbook
For more, join https://t.iss.one/pythonanalyst
Python Data Science Handbook: full text in Jupyter Notebooks. This repository contains the entire Python Data Science Handbook, in the form of (free!) Jupyter notebooks.
Creator: Jake Vanderplas
Stars⭐️: 39k
Fork: 17.1K
Repo: https://github.com/jakevdp/PythonDataScienceHandbook
For more, join https://t.iss.one/pythonanalyst
👍2
Essential NumPy Functions for Data Analysis
Array Creation:
np.array() - Create an array from a list.
np.zeros((rows, cols)) - Create an array filled with zeros.
np.ones((rows, cols)) - Create an array filled with ones.
np.arange(start, stop, step) - Create an array with a range of values.
Array Operations:
np.sum(array) - Calculate the sum of array elements.
np.mean(array) - Compute the mean.
np.median(array) - Calculate the median.
np.std(array) - Compute the standard deviation.
Indexing and Slicing:
array[start:stop] - Slice an array.
array[row, col] - Access a specific element.
array[:, col] - Select all rows for a column.
Reshaping and Transposing:
array.reshape(new_shape) - Reshape an array.
array.T - Transpose an array.
Random Sampling:
np.random.rand(rows, cols) - Generate random numbers in [0, 1).
np.random.randint(low, high, size) - Generate random integers.
Mathematical Operations:
np.dot(A, B) - Compute the dot product.
np.linalg.inv(A) - Compute the inverse of a matrix.
Here you can find essential Python Interview Resources👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Like this post for more resources like this 👍♥️
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
Array Creation:
np.array() - Create an array from a list.
np.zeros((rows, cols)) - Create an array filled with zeros.
np.ones((rows, cols)) - Create an array filled with ones.
np.arange(start, stop, step) - Create an array with a range of values.
Array Operations:
np.sum(array) - Calculate the sum of array elements.
np.mean(array) - Compute the mean.
np.median(array) - Calculate the median.
np.std(array) - Compute the standard deviation.
Indexing and Slicing:
array[start:stop] - Slice an array.
array[row, col] - Access a specific element.
array[:, col] - Select all rows for a column.
Reshaping and Transposing:
array.reshape(new_shape) - Reshape an array.
array.T - Transpose an array.
Random Sampling:
np.random.rand(rows, cols) - Generate random numbers in [0, 1).
np.random.randint(low, high, size) - Generate random integers.
Mathematical Operations:
np.dot(A, B) - Compute the dot product.
np.linalg.inv(A) - Compute the inverse of a matrix.
Here you can find essential Python Interview Resources👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Like this post for more resources like this 👍♥️
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
👍3❤1
Roadmap to become a Python Developer:
📂 Learn Python Basics (Syntax, Data Types, Loops)
∟📂 Learn Data Structures (Lists, Tuples, Dicts, Sets)
∟📂 Learn Functions & Modules
∟📂 Learn File Handling & Exceptions
∟📂 Learn OOP Concepts
∟📂 Learn Libraries (Pandas, NumPy, etc.)
∟📂 Learn Web Development (Flask / Django)
∟📂 Learn APIs & Database Integration
∟📂 Build Projects & Portfolio
∟✅ Apply for Job
React ❤️ for More
📂 Learn Python Basics (Syntax, Data Types, Loops)
∟📂 Learn Data Structures (Lists, Tuples, Dicts, Sets)
∟📂 Learn Functions & Modules
∟📂 Learn File Handling & Exceptions
∟📂 Learn OOP Concepts
∟📂 Learn Libraries (Pandas, NumPy, etc.)
∟📂 Learn Web Development (Flask / Django)
∟📂 Learn APIs & Database Integration
∟📂 Build Projects & Portfolio
∟✅ Apply for Job
React ❤️ for More
❤7
9 tips to improve your code:
- Declare variables close to usage
- Functions do 1 thing
- Avoid long functions
- Avoid long lines
- Don't repeat code
- Use descriptive variable/function names
- Use few arguments
- Simplify conditions (return age >17;)
- Remove unused code
- Declare variables close to usage
- Functions do 1 thing
- Avoid long functions
- Avoid long lines
- Don't repeat code
- Use descriptive variable/function names
- Use few arguments
- Simplify conditions (return age >17;)
- Remove unused code
Without errors, No-one can become a good programmer.
Errors are the most important phase of learning to code.
Errors are the most important phase of learning to code.
What are the common built-in data types in Python?
Python supports the below-mentioned built-in data types:
Immutable data types:
👉Number
👉String
👉Tuple
Mutable data types:
👉List
👉Dictionary
👉set
Python supports the below-mentioned built-in data types:
Immutable data types:
👉Number
👉String
👉Tuple
Mutable data types:
👉List
👉Dictionary
👉set
👍2
Python Most Important Interview Questions
Question 1: Calculate the average stock price for Company X over the last 6 months.
Question 2: Identify the month with the highest total sales for Company Y using their monthly sales data.
Question 3: Find the maximum and minimum stock price for Company Z on any given day in the last year.
Question 4: Create a column in the DataFrame showing the percentage change in stock price from the previous day for Company X.
Question 5: Determine the number of days when the stock price of Company Y was above its 30-day moving average. Question
6: Compare the average stock price of Companies X and Z in the first quarter of the year.
#Data#
----------------------------------------------
import pandas as pd
data = { 'Date': pd.date_range(start='2023-01-01', periods=180, freq='D'), 'CompanyX_StockPrice': pd.np.random.randint(50, 150, 180), 'CompanyY_Sales': pd.np.random.randint(20000, 50000, 180), 'CompanyZ_StockPrice': pd.np.random.randint(70, 200, 180) }
df = pd.DataFrame(data)
Question 1: Calculate the average stock price for Company X over the last 6 months.
Question 2: Identify the month with the highest total sales for Company Y using their monthly sales data.
Question 3: Find the maximum and minimum stock price for Company Z on any given day in the last year.
Question 4: Create a column in the DataFrame showing the percentage change in stock price from the previous day for Company X.
Question 5: Determine the number of days when the stock price of Company Y was above its 30-day moving average. Question
6: Compare the average stock price of Companies X and Z in the first quarter of the year.
#Data#
----------------------------------------------
import pandas as pd
data = { 'Date': pd.date_range(start='2023-01-01', periods=180, freq='D'), 'CompanyX_StockPrice': pd.np.random.randint(50, 150, 180), 'CompanyY_Sales': pd.np.random.randint(20000, 50000, 180), 'CompanyZ_StockPrice': pd.np.random.randint(70, 200, 180) }
df = pd.DataFrame(data)
👍7