Python for Data Analysts
48K subscribers
504 photos
64 files
320 links
Find top Python resources from global universities, cool projects, and learning materials for data analytics.

For promotions: @coderfun

Useful links: heylink.me/DataAnalytics
Download Telegram
Python is a popular programming language in the field of data analysis due to its versatility, ease of use, and extensive libraries for data manipulation, visualization, and analysis. Here are some key Python skills that are important for data analysts:

1. Basic Python Programming: Understanding basic Python syntax, data types, control structures, functions, and object-oriented programming concepts is essential for data analysis in Python.

2. NumPy: NumPy is a fundamental package for scientific computing in Python. It provides support for large multidimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays.

3. Pandas: Pandas is a powerful library for data manipulation and analysis in Python. It provides data structures like DataFrames and Series that make it easy to work with structured data and perform tasks such as filtering, grouping, joining, and reshaping data.

4. Matplotlib and Seaborn: Matplotlib is a versatile library for creating static, interactive, and animated visualizations in Python. Seaborn is built on top of Matplotlib and provides a higher-level interface for creating attractive statistical graphics.

5. Scikit-learn: Scikit-learn is a popular machine learning library in Python that provides tools for building predictive models, performing clustering and classification tasks, and evaluating model performance.

6. Jupyter Notebooks: Jupyter Notebooks are an interactive computing environment that allows you to create and share documents containing live code, equations, visualizations, and narrative text. They are commonly used by data analysts for exploratory data analysis and sharing insights.

7. SQLAlchemy: SQLAlchemy is a Python SQL toolkit and Object-Relational Mapping (ORM) library that provides a high-level interface for interacting with relational databases using Python.

8. Regular Expressions: Regular expressions (regex) are powerful tools for pattern matching and text processing in Python. They are useful for extracting specific information from text data or performing data cleaning tasks.

9. Data Visualization Libraries: In addition to Matplotlib and Seaborn, data analysts may also use other visualization libraries like Plotly, Bokeh, or Altair to create interactive visualizations in Python.

10. Web Scraping: Knowledge of web scraping techniques using libraries like BeautifulSoup or Scrapy can be useful for collecting data from websites for analysis.

By mastering these Python skills and applying them to real-world data analysis projects, you can enhance your proficiency as a data analyst and unlock new opportunities in the field.
๐Ÿ‘3โค1
๐Ÿญ๐Ÿฌ,๐Ÿฌ๐Ÿฌ๐Ÿฌ+ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—š๐—ถ๐—ฎ๐—ป๐˜๐˜€๐Ÿ˜

 Learn from Google, Microsoft, Amazon, and More

Including thousands of free certificates and badges from these leading big tech companies

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:-

https://pdlink.in/4kWFApf

Enroll For FREE & Get Certified ๐ŸŽ“
Python Interview Questions
๐Ÿ‘6
Python Magic
โค4
5 Essential Portfolio Projects for data analysts ๐Ÿ˜„๐Ÿ‘‡

1. Exploratory Data Analysis (EDA) on a Real Dataset: Choose a dataset related to your interests, perform thorough EDA, visualize trends, and draw insights. This showcases your ability to understand data and derive meaningful conclusions.
Free websites to find datasets: https://t.iss.one/DataPortfolio/8

2. Predictive Modeling Project: Build a predictive model, such as a linear regression or classification model. Use a dataset to train and test your model, and evaluate its performance. Highlight your skills in machine learning and statistical analysis.

3. Data Cleaning and Transformation: Take a messy dataset and demonstrate your skills in cleaning and transforming data. Showcase your ability to handle missing values, outliers, and prepare data for analysis.

4. Dashboard Creation: Utilize tools like Tableau or Power BI to create an interactive dashboard. This project demonstrates your ability to present data insights in a visually appealing and user-friendly manner.

5. Time Series Analysis: Work with time-series data to forecast future trends. This could involve stock prices, weather data, or any other time-dependent dataset. Showcase your understanding of time-series concepts and forecasting techniques.

Share with credits: https://t.iss.one/sqlspecialist

Like it if you need more posts like this ๐Ÿ˜„โค๏ธ

Hope it helps :)
๐Ÿ‘3
๐—ง๐—ผ๐—ฝ ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ฎ๐—ป๐—ถ๐—ฒ๐˜€ ๐—ข๐—ณ๐—ณ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐—™๐—ฅ๐—˜๐—˜ ๐˜ƒ๐—ถ๐—ฟ๐˜๐˜‚๐—ฎ๐—น ๐—ฒ๐˜…๐—ฝ๐—ฒ๐—ฟ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฝ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ๐˜€๐Ÿ˜

Want to work on real industry tasks, develop in-demand skills, and boost your resumeโ€”all for FREE? 

 Your dream career starts with real experienceโ€”grab this opportunity today!

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4bCyUIM

๐Ÿ’ก No experience requiredโ€”just learn, upskill & build your portfolio! ๐Ÿš€
๐Ÿ‘1
Cheat-Sheets For Pandas ๐Ÿผ

Don't Forget to give reactionsโค๏ธ
โค10