Starting your journey as a data analyst is an amazing start for your career. As you progress, you might find new areas that pique your interest:
โข Data Science: If you enjoy diving deep into statistics, predictive modeling, and machine learning, this could be your next challenge.
โข Data Engineering: If building and optimizing data pipelines excites you, this might be the path for you.
โข Business Analysis: If you're passionate about translating data into strategic business insights, consider transitioning to a business analyst role.
But remember, even if you stick with data analysis, there's always room for growth, especially with the evolving landscape of AI.
No matter where your path leads, the key is to start now.
โข Data Science: If you enjoy diving deep into statistics, predictive modeling, and machine learning, this could be your next challenge.
โข Data Engineering: If building and optimizing data pipelines excites you, this might be the path for you.
โข Business Analysis: If you're passionate about translating data into strategic business insights, consider transitioning to a business analyst role.
But remember, even if you stick with data analysis, there's always room for growth, especially with the evolving landscape of AI.
No matter where your path leads, the key is to start now.
๐3โค1
๐๐บ๐ฝ๐ฟ๐ฒ๐๐ ๐ฅ๐ฒ๐ฐ๐ฟ๐๐ถ๐๐ฒ๐ฟ๐ ๐๐ถ๐๐ต ๐ง๐ต๐ฒ๐๐ฒ ๐ฑ ๐ฆ๐ค๐ ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ ๐ณ๐ผ๐ฟ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐!๐
Want to land a data analytics job?
Showcase your SQL skills with real-world projects! ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FJzJDu
Build your portfolio & stand out in job applications! Start todayโ ๏ธ
Want to land a data analytics job?
Showcase your SQL skills with real-world projects! ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FJzJDu
Build your portfolio & stand out in job applications! Start todayโ ๏ธ
๐2โค1
Pandas is a popular Python library for data manipulation and analysis. Here are some essential concepts in Pandas that every data analyst should be familiar with:
1. Data Structures: Pandas provides two main data structures: Series and DataFrame. A Series is a one-dimensional array-like object, while a DataFrame is a two-dimensional tabular data structure similar to a spreadsheet.
2. Indexing and Selection: Pandas allows you to select and manipulate data using various indexing techniques, such as label-based indexing (loc), integer-based indexing (iloc), and boolean indexing.
3. Data Cleaning: Pandas provides functions for handling missing data, removing duplicates, and filling in missing values. Methods like dropna(), fillna(), and drop_duplicates() are commonly used for data cleaning.
4. Data Manipulation: Pandas offers powerful tools for data manipulation, such as merging, joining, concatenating, reshaping, and grouping data. Functions like merge(), concat(), pivot_table(), and groupby() are commonly used for data manipulation tasks.
5. Data Aggregation: Pandas allows you to aggregate data using functions like sum(), mean(), count(), min(), max(), and custom aggregation functions. These functions help summarize and analyze data at different levels.
6. Time Series Analysis: Pandas has built-in support for working with time series data, including date/time indexing, resampling, shifting, rolling window calculations, and time zone handling.
7. Data Visualization: Pandas integrates well with popular data visualization libraries like Matplotlib and Seaborn to create visualizations directly from DataFrames. You can plot data using functions like plot(), hist(), scatter(), and boxplot().
8. Handling Categorical Data: Pandas provides support for working with categorical data through the Categorical data type. This helps in efficient storage and analysis of categorical variables.
9. Reading and Writing Data: Pandas can read data from various file formats such as CSV, Excel, SQL databases, JSON, and HTML. It can also write data back to these formats after processing.
10. Performance Optimization: Pandas offers methods to optimize performance, such as vectorized operations (using NumPy arrays), using apply() function efficiently, and avoiding loops for faster data processing.
By mastering these essential concepts in Pandas, you can efficiently manipulate and analyze data, perform complex operations, and derive valuable insights from your datasets as a data analyst. Regular practice and hands-on experience with Pandas will further enhance your skills in data manipulation and analysis.
1. Data Structures: Pandas provides two main data structures: Series and DataFrame. A Series is a one-dimensional array-like object, while a DataFrame is a two-dimensional tabular data structure similar to a spreadsheet.
2. Indexing and Selection: Pandas allows you to select and manipulate data using various indexing techniques, such as label-based indexing (loc), integer-based indexing (iloc), and boolean indexing.
3. Data Cleaning: Pandas provides functions for handling missing data, removing duplicates, and filling in missing values. Methods like dropna(), fillna(), and drop_duplicates() are commonly used for data cleaning.
4. Data Manipulation: Pandas offers powerful tools for data manipulation, such as merging, joining, concatenating, reshaping, and grouping data. Functions like merge(), concat(), pivot_table(), and groupby() are commonly used for data manipulation tasks.
5. Data Aggregation: Pandas allows you to aggregate data using functions like sum(), mean(), count(), min(), max(), and custom aggregation functions. These functions help summarize and analyze data at different levels.
6. Time Series Analysis: Pandas has built-in support for working with time series data, including date/time indexing, resampling, shifting, rolling window calculations, and time zone handling.
7. Data Visualization: Pandas integrates well with popular data visualization libraries like Matplotlib and Seaborn to create visualizations directly from DataFrames. You can plot data using functions like plot(), hist(), scatter(), and boxplot().
8. Handling Categorical Data: Pandas provides support for working with categorical data through the Categorical data type. This helps in efficient storage and analysis of categorical variables.
9. Reading and Writing Data: Pandas can read data from various file formats such as CSV, Excel, SQL databases, JSON, and HTML. It can also write data back to these formats after processing.
10. Performance Optimization: Pandas offers methods to optimize performance, such as vectorized operations (using NumPy arrays), using apply() function efficiently, and avoiding loops for faster data processing.
By mastering these essential concepts in Pandas, you can efficiently manipulate and analyze data, perform complex operations, and derive valuable insights from your datasets as a data analyst. Regular practice and hands-on experience with Pandas will further enhance your skills in data manipulation and analysis.
๐3
Prepare for GATE: The Right Time is NOW!
GeeksforGeeks brings you everything you need to crack GATE 2026 โ 900+ live hours, 300+ recorded sessions, and expert mentorship to keep you on track.
Whatโs inside?
โ Live & recorded classes with Indiaโs top educators
โ 200+ mock tests to track your progress
โ Study materials - PYQs, workbooks, formula book & more
โ 1:1 mentorship & AI doubt resolution for instant support
โ Interview prep for IITs & PSUs to help you land opportunities
Learn from Experts Like:
Satish Kumar Yadav โ Trained 20K+ students
Dr. Khaleel โ Ph.D. in CS, 29+ years of experience
Chandan Jha โ Ex-ISRO, AIR 23 in GATE
Vijay Kumar Agarwal โ M.Tech (NIT), 13+ years of experience
Sakshi Singhal โ IIT Roorkee, AIR 56 CSIR-NET
Shailendra Singh โ GATE 99.24 percentile
Devasane Mallesham โ IIT Bombay, 13+ years of experience
Use code UPSKILL30 to get an extra 30% OFF (Limited time only)
๐ Enroll for a free counseling session now: https://gfgcdn.com/tu/UI2/
GeeksforGeeks brings you everything you need to crack GATE 2026 โ 900+ live hours, 300+ recorded sessions, and expert mentorship to keep you on track.
Whatโs inside?
โ Live & recorded classes with Indiaโs top educators
โ 200+ mock tests to track your progress
โ Study materials - PYQs, workbooks, formula book & more
โ 1:1 mentorship & AI doubt resolution for instant support
โ Interview prep for IITs & PSUs to help you land opportunities
Learn from Experts Like:
Satish Kumar Yadav โ Trained 20K+ students
Dr. Khaleel โ Ph.D. in CS, 29+ years of experience
Chandan Jha โ Ex-ISRO, AIR 23 in GATE
Vijay Kumar Agarwal โ M.Tech (NIT), 13+ years of experience
Sakshi Singhal โ IIT Roorkee, AIR 56 CSIR-NET
Shailendra Singh โ GATE 99.24 percentile
Devasane Mallesham โ IIT Bombay, 13+ years of experience
Use code UPSKILL30 to get an extra 30% OFF (Limited time only)
๐ Enroll for a free counseling session now: https://gfgcdn.com/tu/UI2/
๐2
๐ณ ๐๐ฅ๐๐ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
Master Data Analytics in 2025!
These 7 FREE courses will help you master Power BI, Excel, SQL, and Data Fundamentals!
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4iMlJXZ
Enroll For FREE & Get Certified ๐
Master Data Analytics in 2025!
These 7 FREE courses will help you master Power BI, Excel, SQL, and Data Fundamentals!
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4iMlJXZ
Enroll For FREE & Get Certified ๐
5 misconceptions about data analytics (and what's actually true):
โ The more sophisticated the tool, the better the analyst
โ Many analysts do their jobs with "basic" tools like Excel
โ You're just there to crunch the numbers
โ You need to be able to tell a story with the data
โ You need super advanced math skills
โ Understanding basic math and statistics is a good place to start
โ Data is always clean and accurate
โ Data is never clean and 100% accurate (without lots of prep work)
โ You'll work in isolation and not talk to anyone
โ Communication with your team and your stakeholders is essential
โ The more sophisticated the tool, the better the analyst
โ Many analysts do their jobs with "basic" tools like Excel
โ You're just there to crunch the numbers
โ You need to be able to tell a story with the data
โ You need super advanced math skills
โ Understanding basic math and statistics is a good place to start
โ Data is always clean and accurate
โ Data is never clean and 100% accurate (without lots of prep work)
โ You'll work in isolation and not talk to anyone
โ Communication with your team and your stakeholders is essential
๐9
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ ๐๐ป๐๐ฒ๐ฟ๐ป๐๐ต๐ถ๐ฝ๐
Organization :- IIM Udaipur
Role:- Data Analyst Intern
Start Date: Immediately
Duration: 2-4 Months
Stipend: โน15,000โโน20,000/month
๐๐ฉ๐ฉ๐ฅ๐ฒ ๐๐ข๐ง๐ค๐:-
https://pdlink.in/4hfXaSc
Application Closing Date: 24th March 2025
Organization :- IIM Udaipur
Role:- Data Analyst Intern
Start Date: Immediately
Duration: 2-4 Months
Stipend: โน15,000โโน20,000/month
๐๐ฉ๐ฉ๐ฅ๐ฒ ๐๐ข๐ง๐ค๐:-
https://pdlink.in/4hfXaSc
Application Closing Date: 24th March 2025
๐1
Hi Guys,
Here are some of the telegram channels which may help you in data analytics journey ๐๐
SQL: https://t.iss.one/sqlanalyst
Power BI & Tableau: https://t.iss.one/PowerBI_analyst
Excel: https://t.iss.one/excel_analyst
Python: https://t.iss.one/dsabooks
Jobs: https://t.iss.one/jobs_SQL
Data Science: https://t.iss.one/datasciencefree
Artificial intelligence: https://t.iss.one/machinelearning_deeplearning
Data Engineering: https://t.iss.one/sql_engineer
Data Analysts: https://t.iss.one/sqlspecialist
Hope it helps :)
Here are some of the telegram channels which may help you in data analytics journey ๐๐
SQL: https://t.iss.one/sqlanalyst
Power BI & Tableau: https://t.iss.one/PowerBI_analyst
Excel: https://t.iss.one/excel_analyst
Python: https://t.iss.one/dsabooks
Jobs: https://t.iss.one/jobs_SQL
Data Science: https://t.iss.one/datasciencefree
Artificial intelligence: https://t.iss.one/machinelearning_deeplearning
Data Engineering: https://t.iss.one/sql_engineer
Data Analysts: https://t.iss.one/sqlspecialist
Hope it helps :)
๐4โค2
๐๐๐ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐
Top Free Courses You Can Take Today
1๏ธโฃ Data Science Fundamentals
2๏ธโฃ AI & Machine Learning
3๏ธโฃ Python for Data Science
4๏ธโฃ Cloud Computing & Big Data
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/41Hy2hp
Enroll For FREE & Get Certified ๐
Top Free Courses You Can Take Today
1๏ธโฃ Data Science Fundamentals
2๏ธโฃ AI & Machine Learning
3๏ธโฃ Python for Data Science
4๏ธโฃ Cloud Computing & Big Data
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/41Hy2hp
Enroll For FREE & Get Certified ๐
โค1๐1
30-day roadmap to learn Python up to an intermediate level
Week 1: Python Basics
*Day 1-2:*
- Learn about Python, its syntax, and how to install Python on your computer.
- Write your first "Hello, World!" program.
- Understand variables and data types (integers, floats, strings).
*Day 3-4:*
- Explore basic operations (arithmetic, string concatenation).
- Learn about user input and how to use the
- Practice creating and using variables.
*Day 5-7:*
- Dive into control flow with if statements, else statements, and loops (for and while).
- Work on simple programs that involve conditions and loops.
Week 2: Functions and Modules
*Day 8-9:*
- Study functions and how to define your own functions using
- Learn about function arguments and return values.
*Day 10-12:*
- Explore built-in functions and libraries (e.g.,
- Understand how to import modules and use their functions.
*Day 13-14:*
- Practice writing functions for common tasks.
- Create a small project that utilizes functions and modules.
Week 3: Data Structures
*Day 15-17:*
- Learn about lists and their operations (slicing, appending, removing).
- Understand how to work with lists of different data types.
*Day 18-19:*
- Study dictionaries and their key-value pairs.
- Practice manipulating dictionary data.
*Day 20-21:*
- Explore tuples and sets.
- Understand when and how to use each data structure.
Week 4: Intermediate Topics
*Day 22-23:*
- Study file handling and how to read/write files in Python.
- Work on projects involving file operations.
*Day 24-26:*
- Learn about exceptions and error handling.
- Explore object-oriented programming (classes and objects).
*Day 27-28:*
- Dive into more advanced topics like list comprehensions and generators.
- Study Python's built-in libraries for web development (e.g., requests).
*Day 29-30:*
- Explore additional libraries and frameworks relevant to your interests (e.g., NumPy for data analysis, Flask for web development, or Pygame for game development).
- Work on a more complex project that combines your knowledge from the past weeks.
Throughout the 30 days, practice coding daily, and don't hesitate to explore Python's documentation and online resources for additional help. Learning Python is a dynamic process, so adapt the roadmap based on your progress and interests.
Best Programming Resources: https://topmate.io/coding/886839
ENJOY LEARNING ๐๐
Week 1: Python Basics
*Day 1-2:*
- Learn about Python, its syntax, and how to install Python on your computer.
- Write your first "Hello, World!" program.
- Understand variables and data types (integers, floats, strings).
*Day 3-4:*
- Explore basic operations (arithmetic, string concatenation).
- Learn about user input and how to use the
input()
function.- Practice creating and using variables.
*Day 5-7:*
- Dive into control flow with if statements, else statements, and loops (for and while).
- Work on simple programs that involve conditions and loops.
Week 2: Functions and Modules
*Day 8-9:*
- Study functions and how to define your own functions using
def
.- Learn about function arguments and return values.
*Day 10-12:*
- Explore built-in functions and libraries (e.g.,
len()
, random
, math
).- Understand how to import modules and use their functions.
*Day 13-14:*
- Practice writing functions for common tasks.
- Create a small project that utilizes functions and modules.
Week 3: Data Structures
*Day 15-17:*
- Learn about lists and their operations (slicing, appending, removing).
- Understand how to work with lists of different data types.
*Day 18-19:*
- Study dictionaries and their key-value pairs.
- Practice manipulating dictionary data.
*Day 20-21:*
- Explore tuples and sets.
- Understand when and how to use each data structure.
Week 4: Intermediate Topics
*Day 22-23:*
- Study file handling and how to read/write files in Python.
- Work on projects involving file operations.
*Day 24-26:*
- Learn about exceptions and error handling.
- Explore object-oriented programming (classes and objects).
*Day 27-28:*
- Dive into more advanced topics like list comprehensions and generators.
- Study Python's built-in libraries for web development (e.g., requests).
*Day 29-30:*
- Explore additional libraries and frameworks relevant to your interests (e.g., NumPy for data analysis, Flask for web development, or Pygame for game development).
- Work on a more complex project that combines your knowledge from the past weeks.
Throughout the 30 days, practice coding daily, and don't hesitate to explore Python's documentation and online resources for additional help. Learning Python is a dynamic process, so adapt the roadmap based on your progress and interests.
Best Programming Resources: https://topmate.io/coding/886839
ENJOY LEARNING ๐๐
โค2
Goldman Sachs senior data analyst interview asked questions
SQL
1 find avg of salaries department wise from table
2 Write a SQL query to see employee name and manager name using a self-join on 'employees' table with columns 'emp_id', 'name', and 'manager_id'.
3 newest joinee for every department (solved using lead lag)
POWER BI
1. What does Filter context in DAX mean?
2. Explain how to implement Row-Level Security (RLS) in Power BI.
3. Describe different types of filters in Power BI.
4. Explain the difference between 'ALL' and 'ALLSELECTED' in DAX.
5. How do you calculate the total sales for a specific product using DAX?
PYTHON
1. Create a dictionary, add elements to it, modify an element, and then print the dictionary in alphabetical order of keys.
2. Find unique values in a list of assorted numbers and print the count of how many times each value is repeated.
3. Find and print duplicate values in a list of assorted numbers, along with the number of times each value is repeated.
I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://t.iss.one/DataSimplifier
Hope this helps you ๐
SQL
1 find avg of salaries department wise from table
2 Write a SQL query to see employee name and manager name using a self-join on 'employees' table with columns 'emp_id', 'name', and 'manager_id'.
3 newest joinee for every department (solved using lead lag)
POWER BI
1. What does Filter context in DAX mean?
2. Explain how to implement Row-Level Security (RLS) in Power BI.
3. Describe different types of filters in Power BI.
4. Explain the difference between 'ALL' and 'ALLSELECTED' in DAX.
5. How do you calculate the total sales for a specific product using DAX?
PYTHON
1. Create a dictionary, add elements to it, modify an element, and then print the dictionary in alphabetical order of keys.
2. Find unique values in a list of assorted numbers and print the count of how many times each value is repeated.
3. Find and print duplicate values in a list of assorted numbers, along with the number of times each value is repeated.
I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://t.iss.one/DataSimplifier
Hope this helps you ๐
๐4โค2
๐๐ฟ๐ฒ๐ฒ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐๐ฒ๐ฎ๐ฟ๐ป ๐๐ & ๐ ๐ฎ๐ฐ๐ต๐ถ๐ป๐ฒ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด๐
AI is one of the fastest-growing fields in tech, and learning it now can put you ahead of the competition.
These free courses will help you master AI and machine learning step-by-step
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4iuytCU
Enroll For FREE & Get Certified ๐
AI is one of the fastest-growing fields in tech, and learning it now can put you ahead of the competition.
These free courses will help you master AI and machine learning step-by-step
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4iuytCU
Enroll For FREE & Get Certified ๐
โค1๐1
Here are 5 key Python libraries/ concepts that are particularly important for data analysts:
1. Pandas: Pandas is a powerful library for data manipulation and analysis in Python. It provides data structures like DataFrames and Series that make it easy to work with structured data. Pandas offers functions for reading and writing data, cleaning and transforming data, and performing data analysis tasks like filtering, grouping, and aggregating.
2. NumPy: NumPy is a fundamental package for scientific computing in Python. It provides support for large, multi-dimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays efficiently. NumPy is often used in conjunction with Pandas for numerical computations and data manipulation.
3. Matplotlib and Seaborn: Matplotlib is a popular plotting library in Python that allows you to create a wide variety of static, interactive, and animated visualizations. Seaborn is built on top of Matplotlib and provides a higher-level interface for creating attractive and informative statistical graphics. These libraries are essential for data visualization in data analysis projects.
4. Scikit-learn: Scikit-learn is a machine learning library in Python that provides simple and efficient tools for data mining and data analysis tasks. It includes a wide range of algorithms for classification, regression, clustering, dimensionality reduction, and more. Scikit-learn also offers tools for model evaluation, hyperparameter tuning, and model selection.
5. Data Cleaning and Preprocessing: Data cleaning and preprocessing are crucial steps in any data analysis project. Python offers libraries like Pandas and NumPy for handling missing values, removing duplicates, standardizing data types, scaling numerical features, encoding categorical variables, and more. Understanding how to clean and preprocess data effectively is essential for accurate analysis and modeling.
By mastering these Python concepts and libraries, data analysts can efficiently manipulate and analyze data, create insightful visualizations, apply machine learning techniques, and derive valuable insights from their datasets.
Credits: https://t.iss.one/free4unow_backup
ENJOY LEARNING ๐๐
1. Pandas: Pandas is a powerful library for data manipulation and analysis in Python. It provides data structures like DataFrames and Series that make it easy to work with structured data. Pandas offers functions for reading and writing data, cleaning and transforming data, and performing data analysis tasks like filtering, grouping, and aggregating.
2. NumPy: NumPy is a fundamental package for scientific computing in Python. It provides support for large, multi-dimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays efficiently. NumPy is often used in conjunction with Pandas for numerical computations and data manipulation.
3. Matplotlib and Seaborn: Matplotlib is a popular plotting library in Python that allows you to create a wide variety of static, interactive, and animated visualizations. Seaborn is built on top of Matplotlib and provides a higher-level interface for creating attractive and informative statistical graphics. These libraries are essential for data visualization in data analysis projects.
4. Scikit-learn: Scikit-learn is a machine learning library in Python that provides simple and efficient tools for data mining and data analysis tasks. It includes a wide range of algorithms for classification, regression, clustering, dimensionality reduction, and more. Scikit-learn also offers tools for model evaluation, hyperparameter tuning, and model selection.
5. Data Cleaning and Preprocessing: Data cleaning and preprocessing are crucial steps in any data analysis project. Python offers libraries like Pandas and NumPy for handling missing values, removing duplicates, standardizing data types, scaling numerical features, encoding categorical variables, and more. Understanding how to clean and preprocess data effectively is essential for accurate analysis and modeling.
By mastering these Python concepts and libraries, data analysts can efficiently manipulate and analyze data, create insightful visualizations, apply machine learning techniques, and derive valuable insights from their datasets.
Credits: https://t.iss.one/free4unow_backup
ENJOY LEARNING ๐๐
๐5
๐ ๐ฎ๐๐๐ฒ๐ฟ ๐ฆ๐ค๐ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐ ๐๐ถ๐๐ต ๐ง๐ต๐ฒ๐๐ฒ ๐ฑ ๐ฃ๐ผ๐๐ฒ๐ฟ๐ณ๐๐น ๐ช๐ฒ๐ฏ๐๐ถ๐๐ฒ๐!๐
Want to boost your data skills without spending a dime?
These FREE SQL courses will take you from beginner to expert, whether youโre an aspiring Data Analyst, Data Scientist, or Backend Developer!๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4l2q2Ay
Start Learning Today โ ๏ธ
Want to boost your data skills without spending a dime?
These FREE SQL courses will take you from beginner to expert, whether youโre an aspiring Data Analyst, Data Scientist, or Backend Developer!๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4l2q2Ay
Start Learning Today โ ๏ธ
๐1
๐ Build Your Career In Data Analytics! ๐
๐ 2000+ Students Placed
๐ฐ 7.4 LPA Average Package
๐ 41 LPA Highest Package
๐ค 500+ Hiring Partners
Registration link: https://tracking.acciojob.com/g/PUfdDxgHR
Limited Seats, Register Now! โจ
๐ 2000+ Students Placed
๐ฐ 7.4 LPA Average Package
๐ 41 LPA Highest Package
๐ค 500+ Hiring Partners
Registration link: https://tracking.acciojob.com/g/PUfdDxgHR
Limited Seats, Register Now! โจ
โค2๐1
๐๐ฃ ๐ ๐ผ๐ฟ๐ด๐ฎ๐ป ๐๐ฅ๐๐ ๐ฉ๐ถ๐ฟ๐๐๐ฎ๐น ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ๐
Want hands-on experience from a top global company without leaving your home?
These FREE virtual internship by JPMorgan on Forage let you explore careers in
โ Software Engineering
โ Investment Banking
โ Quantitative Research
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4kStNZi
Enroll For FREE & Get Certified ๐
Want hands-on experience from a top global company without leaving your home?
These FREE virtual internship by JPMorgan on Forage let you explore careers in
โ Software Engineering
โ Investment Banking
โ Quantitative Research
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4kStNZi
Enroll For FREE & Get Certified ๐
Python Interview Questions for data analyst interview
Question 1: Find the top 5 dates when the percentage change in Company A's stock price was the highest.
Question 2: Calculate the annualized volatility of Company B's stock price. (Hint: Annualized volatility is the standard deviation of daily returns multiplied by the square root of the number of trading days in a year.)
Question 3: Identify the longest streaks of consecutive days when the stock price of Company A was either increasing or decreasing continuously.
Question 4: Create a new column that represents the cumulative returns of Company A's stock price over the year.
Question 5: Calculate the 7-day rolling average of both Company A's and Company B's stock prices and find the date when the two rolling averages were closest to each other.
Question 6: Create a new DataFrame that contains only the dates when Company A's stock price was above its 50-day moving average, and Company B's stock price was below its 50-day moving average
Question 1: Find the top 5 dates when the percentage change in Company A's stock price was the highest.
Question 2: Calculate the annualized volatility of Company B's stock price. (Hint: Annualized volatility is the standard deviation of daily returns multiplied by the square root of the number of trading days in a year.)
Question 3: Identify the longest streaks of consecutive days when the stock price of Company A was either increasing or decreasing continuously.
Question 4: Create a new column that represents the cumulative returns of Company A's stock price over the year.
Question 5: Calculate the 7-day rolling average of both Company A's and Company B's stock prices and find the date when the two rolling averages were closest to each other.
Question 6: Create a new DataFrame that contains only the dates when Company A's stock price was above its 50-day moving average, and Company B's stock price was below its 50-day moving average
๐1