Python for Data Analysts
47.9K subscribers
497 photos
64 files
318 links
Find top Python resources from global universities, cool projects, and learning materials for data analytics.

For promotions: @coderfun

Useful links: heylink.me/DataAnalytics
Download Telegram
Infosys Python - Pandas Interview Q & A.pdf
56.8 KB
πŸ‘‰πŸ» DO LIKE IF YOU WANT MORE CONTENT LIKE THIS FOR FREE πŸ†“
πŸ‘35❀5
Essential Python Libraries for Data Analytics πŸ˜„πŸ‘‡

Python Free Resources: https://t.iss.one/pythondevelopersindia

1. NumPy:
- Efficient numerical operations and array manipulation.

2. Pandas:
- Data manipulation and analysis with powerful data structures (DataFrame, Series).

3. Matplotlib:
- 2D plotting library for creating visualizations.

4. Scikit-learn:
- Machine learning toolkit for classification, regression, clustering, etc.

5. TensorFlow:
- Open-source machine learning framework for building and deploying ML models.

6. PyTorch:
- Deep learning library, particularly popular for neural network research.

7. Django:
- High-level web framework for building robust, scalable web applications.

8. Flask:
- Lightweight web framework for building smaller web applications and APIs.

9. Requests:
- HTTP library for making HTTP requests.

10. Beautiful Soup:
- Web scraping library for pulling data out of HTML and XML files.

As a beginner, you can start with Pandas and Numpy libraries for data analysis. If you want to transition from Data Analyst to Data Scientist, then you can start applying ML libraries like Scikit-learn, Tensorflow, Pytorch, etc. in your data projects.

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
πŸ‘15❀13
Python Cheat Sheet.pdf
677.7 KB
This cheat sheet includes basic python required for data analysis excluding pandas, numpy & other libraries
πŸ‘25❀2
Python from scratch
by University of Waterloo

0. Introduction
1. First steps
2. Built-in functions
3. Storing and using information
4. Creating functions
5. Booleans
6. Branching
7. Building better programs
8. Iteration using while
9. Storing elements in a sequence
10. Iteration using for
11. Bundling information into objects
12. Structuring data
13. Recursion

https://open.cs.uwaterloo.ca/python-from-scratch/

#python
πŸ‘15❀6πŸ₯°4
Numpy Cheatsheet
❀18πŸ‘9πŸ₯°4
30-Days-Of-Python

30 days of Python programming challenge is a step-by-step guide to learn the Python programming language in 30 days. This challenge may take more than100 days, follow your own pace.

Creator:  Asabeneh
Stars ⭐️: 33.2k
Forked By: 6.7k
https://github.com/Azure/azure-sdk-for-python
πŸ‘13❀2
Free Resources for Python

Codebasics python tutorials (first 16) β€” 
https://www.youtube.com/playlist?list=PLeo1K3hjS3uv5U-Lmlnucd7gqF-3ehIh0

Practice Python course
https://dabeaz-course.github.io/practical-python/Notes/Contents.html

Codebasics python HINDI tutorials β€”
 https://www.youtube.com/playlist?list=PLPbgcxheSpE1DJKfdko58_AIZRIT0TjpO

Useful Python resources for beginners
https://t.iss.one/programming_guide/8

Python 3 Book for beginners
https://t.iss.one/pythondevelopersindia/272?single
πŸ‘7❀2
πŸš€ Essential Python snippets to explore data:
 
1.   .head() - Review top rows
2.   .tail() - Review bottom rows
3.   .info() - Summary of DataFrame
4.   .shape - Shape of DataFrame
5.   .describe() - Descriptive stats
6.   .isnull().sum() - Check missing values
7.   .dtypes - Data types of columns
8.   .unique() - Unique values in a column
9.   .nunique() - Count unique values
10.   .value_counts() - Value counts in a column
11.   .corr() - Correlation matrix
πŸ‘19❀10
Most Important Python Topics for Data Analyst Interview:

#Basics of Python:

1. Data Types

2. Lists

3. Dictionaries

4. Control Structures:

- if-elif-else

- Loops

5. Functions

6. Practice basic FAQs questions, below mentioned are few examples:

- How to reverse a string in Python?

- How to find the largest/smallest number in a list?

- How to remove duplicates from a list?

- How to count the occurrences of each element in a list?

- How to check if a string is a palindrome?

#Pandas:

1. Pandas Data Structures (Series, DataFrame)

2. Creating and Manipulating DataFrames

3. Filtering and Selecting Data

4. Grouping and Aggregating Data

5. Handling Missing Values

6. Merging and Joining DataFrames

7. Adding and Removing Columns

8. Exploratory Data Analysis (EDA):

- Descriptive Statistics

- Data Visualization with Pandas (Line Plots, Bar Plots, Histograms)

- Correlation and Covariance

- Handling Duplicates

- Data Transformation

#Numpy:

1. NumPy Arrays

2. Array Operations:

- Creating Arrays

- Slicing and Indexing

- Arithmetic Operations

#Integration with Other Libraries:

1. Basic Data Visualization with Pandas (Line Plots, Bar Plots)

#Key Concepts to Revise:

1. Data Manipulation with Pandas and NumPy

2. Data Cleaning Techniques

3. File Handling (reading and writing CSV files, JSON files)

4. Handling Missing and Duplicate Values

5. Data Transformation (scaling, normalization)

6. Data Aggregation and Group Operations

7. Combining and Merging Datasets
πŸ‘34❀1
Always remember this one thing in your life β€οΈπŸ‘‡
https://youtube.com/shorts/ir-4oBR9ec0?feature=share
πŸ‘7❀4
πŸ‘15❀4
Easy Python scenarios for everyday data tasks



Scenario 1: Data Cleaning
Question:
You have a DataFrame containing product prices with columns Product and Price. Some of the prices are stored as strings with a dollar sign, like $10. Write a Python function to convert the prices to float.

Answer:
import pandas as pd
data = {
'Product': ['A', 'B', 'C', 'D'],
'Price': ['$10', '$20', '$30', '$40']
}
df = pd.DataFrame(data)

def clean_prices(df):
df['Price'] = df['Price'].str.replace('$', '').astype(float)
return df
cleaned_df = clean_prices(df)
print(cleaned_df)

Scenario 2: Basic Aggregation
Question:
You have a DataFrame containing sales data with columns Region and Sales. Write a Python function to calculate the total sales for each region.

Answer:
import pandas as pd
data = {
'Region': ['North', 'South', 'East', 'West', 'North', 'South', 'East', 'West'],
'Sales': [100, 200, 150, 250, 300, 100, 200, 150]
}
df = pd.DataFrame(data)

def total_sales_per_region(df):
total_sales = df.groupby('Region')['Sales'].sum().reset_index()
return total_sales

total_sales = total_sales_per_region(df)
print(total_sales)

Scenario 3: Filtering Data
Question:
You have a DataFrame containing customer data with columns β€˜CustomerID’, Name, and Age. Write a Python function to filter out customers who are younger than 18 years old.

Answer:
import pandas as pd
data = {
'CustomerID': [1, 2, 3, 4, 5],
'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],
'Age': [17, 22, 15, 35, 40]
}
df = pd.DataFrame(data)

def filter_customers(df):
filtered_df = df[df['Age'] >= 18]
return filtered_df
filtered_customers = filter_customers(df)
print(filtered_customers)
πŸ‘25❀8
❀13πŸ‘6πŸ‘1
❀12πŸ‘9πŸ₯°2
5 essential Python functions for handling missing data:

πŸ”Ή isna(): Detects missing values in your DataFrame. Identifies NaNs

πŸ”Ή notna(): Detects non-missing values. Filters out the NaNs.

πŸ”Ή interpolate(): Fills missing values using interpolation

πŸ”Ή bfill(): Backward fill. Fills missing values with the next valid observation.

πŸ”Ή ffill(): Forward fill. Fills missing values with the previous valid observation.
πŸ‘14❀10
7 level of writing Python Dictionary



Level 1: Basic Dictionary Creation

Level 2: Accessing and Modifying values

Level 3: Adding and Removing key Values Pairs

Level 4: Dictionary Methods

Level 5: Dictionary Comprehensions

Level 6: Nested Dictionary

Level 7: Advanced Dictionary Operations

I have curated the best interview resources to crack Python Interviews πŸ‘‡πŸ‘‡
https://topmate.io/coding/898340

Hope you'll like it

Like this post if you need more resources like this πŸ‘β€οΈ
πŸ‘7❀2
𝐏𝐲𝐭𝐑𝐨𝐧 𝐈𝐧𝐭𝐞𝐫𝐯𝐒𝐞𝐰 𝐏𝐫𝐞𝐩:

Must practise the following questions for your next Python interview:

1. How would you handle missing values in a dataset?

2. Write a python code to merge datasets based on a common column.

3. How would you analyse the distribution of a continuous variable in dataset?

4. Write a python code to pivot an dataframe.

5. How would you handle categorical variables with many levels?

6. Write a python code to calculate the accuracy, precision, and recall of a classification model?

7. How would you handle errors when working with large datasets?

I have curated the best interview resources to crack Python Interviews πŸ‘‡πŸ‘‡
https://topmate.io/coding/898340

Hope you'll like it

Like this post if you need more resources like this πŸ‘β€οΈ
πŸ‘7❀6
Many people reached out to me saying telegram may get banned in their countries. So I've decided to create WhatsApp channels based on your interests πŸ‘‡πŸ‘‡

Free Courses with Certificate: https://whatsapp.com/channel/0029Vamhzk5JENy1Zg9KmO2g

Jobs & Internship Opportunities:
https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226

Web Development: https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z

Python Free Books & Projects: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

Java Resources: https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s

Coding Interviews: https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X

SQL: https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v

Power BI: https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c

Programming Free Resources: https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17

Data Science Projects: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y

Learn Data Science & Machine Learning: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Don’t worry Guys your contact number will stay hidden!

ENJOY LEARNING πŸ‘πŸ‘
πŸ‘7πŸ‘4❀1
How to create simple pivot table in Python? DataAnalytics

πŸ”Ή Step 1: Import pandas
πŸ”Ή Step 2: Load your DataFrame
πŸ”Ή Step 3: Pivot the DataFrame
πŸ”Ή Step 4: Display the pivoted data
πŸ‘9❀4