Python for Data Analysts
48K subscribers
504 photos
64 files
319 links
Find top Python resources from global universities, cool projects, and learning materials for data analytics.

For promotions: @coderfun

Useful links: heylink.me/DataAnalytics
Download Telegram
Python For Finance
❀22πŸ‘10πŸ₯°1
πŸ“ˆ Predictive Modeling for Future Stock Prices in Python: A Step-by-Step Guide

The process of building a stock price prediction model using Python.

1. Import required modules

2. Obtaining historical data on stock prices

3. Selection of features.

4. Definition of features and target variable

5. Preparing data for training

6. Separation of data into training and test sets

7. Building and training the model

8. Making forecasts

9. Trading Strategy Testing
πŸ‘21❀8
πŸ‘15❀6
Infosys Python - Pandas Interview Q & A.pdf
56.8 KB
πŸ‘‰πŸ» DO LIKE IF YOU WANT MORE CONTENT LIKE THIS FOR FREE πŸ†“
πŸ‘35❀5
Essential Python Libraries for Data Analytics πŸ˜„πŸ‘‡

Python Free Resources: https://t.iss.one/pythondevelopersindia

1. NumPy:
- Efficient numerical operations and array manipulation.

2. Pandas:
- Data manipulation and analysis with powerful data structures (DataFrame, Series).

3. Matplotlib:
- 2D plotting library for creating visualizations.

4. Scikit-learn:
- Machine learning toolkit for classification, regression, clustering, etc.

5. TensorFlow:
- Open-source machine learning framework for building and deploying ML models.

6. PyTorch:
- Deep learning library, particularly popular for neural network research.

7. Django:
- High-level web framework for building robust, scalable web applications.

8. Flask:
- Lightweight web framework for building smaller web applications and APIs.

9. Requests:
- HTTP library for making HTTP requests.

10. Beautiful Soup:
- Web scraping library for pulling data out of HTML and XML files.

As a beginner, you can start with Pandas and Numpy libraries for data analysis. If you want to transition from Data Analyst to Data Scientist, then you can start applying ML libraries like Scikit-learn, Tensorflow, Pytorch, etc. in your data projects.

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
πŸ‘15❀13
Python Cheat Sheet.pdf
677.7 KB
This cheat sheet includes basic python required for data analysis excluding pandas, numpy & other libraries
πŸ‘25❀2
Python from scratch
by University of Waterloo

0. Introduction
1. First steps
2. Built-in functions
3. Storing and using information
4. Creating functions
5. Booleans
6. Branching
7. Building better programs
8. Iteration using while
9. Storing elements in a sequence
10. Iteration using for
11. Bundling information into objects
12. Structuring data
13. Recursion

https://open.cs.uwaterloo.ca/python-from-scratch/

#python
πŸ‘15❀6πŸ₯°4
Numpy Cheatsheet
❀18πŸ‘9πŸ₯°4
30-Days-Of-Python

30 days of Python programming challenge is a step-by-step guide to learn the Python programming language in 30 days. This challenge may take more than100 days, follow your own pace.

Creator:  Asabeneh
Stars ⭐️: 33.2k
Forked By: 6.7k
https://github.com/Azure/azure-sdk-for-python
πŸ‘13❀2
Free Resources for Python

Codebasics python tutorials (first 16) β€” 
https://www.youtube.com/playlist?list=PLeo1K3hjS3uv5U-Lmlnucd7gqF-3ehIh0

Practice Python course
https://dabeaz-course.github.io/practical-python/Notes/Contents.html

Codebasics python HINDI tutorials β€”
 https://www.youtube.com/playlist?list=PLPbgcxheSpE1DJKfdko58_AIZRIT0TjpO

Useful Python resources for beginners
https://t.iss.one/programming_guide/8

Python 3 Book for beginners
https://t.iss.one/pythondevelopersindia/272?single
πŸ‘7❀2