Python for Data Analysts
50.1K subscribers
495 photos
68 files
310 links
Find top Python resources from global universities, cool projects, and learning materials for data analytics.

For promotions: @coderfun

Useful links: heylink.me/DataAnalytics
Download Telegram
๐Ÿ’ป Python Programming Roadmap

๐Ÿ”น Stage 1: Python Basics (Syntax, Variables, Data Types) 
๐Ÿ”น Stage 2: Control Flow (if/else, loops) 
๐Ÿ”น Stage 3: Functions & Modules 
๐Ÿ”น Stage 4: Data Structures (Lists, Tuples, Sets, Dicts) 
๐Ÿ”น Stage 5: File Handling (Read/Write, CSV, JSON) 
๐Ÿ”น Stage 6: Error Handling (try/except, custom exceptions) 
๐Ÿ”น Stage 7: Object-Oriented Programming (Classes, Inheritance) 
๐Ÿ”น Stage 8: Standard Libraries (os, datetime, math) 
๐Ÿ”น Stage 9: Virtual Environments & pip package management 
๐Ÿ”น Stage 10: Working with APIs (Requests, JSON data) 
๐Ÿ”น Stage 11: Web Development Basics (Flask/Django) 
๐Ÿ”น Stage 12: Databases (SQLite, PostgreSQL, SQLAlchemy ORM) 
๐Ÿ”น Stage 13: Testing (unittest, pytest frameworks) 
๐Ÿ”น Stage 14: Version Control with Git & GitHub 
๐Ÿ”น Stage 15: Package Development (setup.py, publishing on PyPI) 
๐Ÿ”น Stage 16: Data Analysis (Pandas, NumPy libraries) 
๐Ÿ”น Stage 17: Data Visualization (Matplotlib, Seaborn) 
๐Ÿ”น Stage 18: Web Scraping (BeautifulSoup, Selenium) 
๐Ÿ”น Stage 19: Automation & Scripting projects 
๐Ÿ”น Stage 20: Advanced Topics (AsyncIO, Type Hints, Design Patterns)

๐Ÿ’ก Tip: Master one stage before moving to the next. Build mini-projects to solidify your learning.

You can find detailed explanation here: ๐Ÿ‘‡ https://whatsapp.com/channel/0029VbBDoisBvvscrno41d1l

Double Tap โ™ฅ๏ธ For More โœ…
โค14
โœ… How Much Python is Enough to Crack a Data Analyst Interview? ๐Ÿ๐Ÿ“Š

Python is a must-have for data analyst roles in 2025โ€”interviewers expect you to handle data cleaning, analysis, and basic viz with it. You don't need to be an expert in ML or advanced scripting; focus on practical skills to process and interpret data efficiently. Based on current trends, here's what gets you interview-ready:

๐Ÿ“Œ Basic Syntax & Data Types
โฆ Variables, strings, integers, floats
โฆ Lists, tuples, dictionaries, sets

๐Ÿ” Conditions & Loops
โฆ if, elif, else
โฆ for and while loops

๐Ÿงฐ Functions & Scope
โฆ def, parameters, return values
โฆ Lambda functions, *args, **kwargs

๐Ÿ“ฆ Pandas Foundation
โฆ DataFrame, Series
โฆ read_csv(), head(), info(), describe()
โฆ Filtering, sorting, indexing

๐Ÿงฎ Data Analysis
โฆ groupby(), agg(), pivot_table()
โฆ Handling missing values: isnull(), fillna()
โฆ Duplicates & outliers

๐Ÿ“Š Visualization
โฆ matplotlib.pyplot & seaborn
โฆ Line, bar, scatter, histogram
โฆ Styling and labeling charts

๐Ÿ—ƒ๏ธ Working with Files
โฆ Reading/writing CSV, Excel
โฆ JSON basics
โฆ Using with open() for text files

๐Ÿ“… Date & Time
โฆ datetime, pd.to_datetime()
โฆ Extracting day, month, year
โฆ Time-based filtering

โœ… Must-Have Strengths:
โฆ Writing clean, readable Python code
โฆ Analyzing DataFrames confidently
โฆ Explaining logic behind analysis
โฆ Connecting analysis to business goals

Aim for 2-3 months of consistent practice (20-30 hours/week) on platforms like DataCamp or LeetCode. Pair it with SQL and Excel for a strong edgeโ€”many jobs test Python via coding challenges on datasets.

Python Resources: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L 

๐Ÿ’ฌ Tap โค๏ธ for more!
โค14๐Ÿ‘2๐Ÿ‘1๐Ÿฅฐ1
Python for Data Analysts
Pandas Cheatsheet .pdf
๐Ÿš€ Pandas Cheatsheet โ€“ Master Data Analysis Like a Pro! ๐Ÿ“Š
Free Data Analytics Courses With Certificate
๐Ÿ‘‡๐Ÿ‘‡
https://www.linkedin.com/posts/sql-analysts_dataanalyst-datascience-datacamp-activity-7392164126371958784-cFIc

Double Tap โ™ฅ๏ธ For More Free Resources
โค7๐Ÿ‘1
R_language Notes.pdf
1.2 MB
๐Ÿ”— R language complete notes ๐Ÿ˜ก

React for more
๐Ÿ‘7๐Ÿ‘4โค2
Pandas Cheatsheet For Data Analysis
โค5๐Ÿ‘1
๐Ÿš€ The Ultimate Data Science Roadmap โ€” 2025 Edition

Ready to start or upgrade your Data Science journey? Hereโ€™s your quick guide from basics to Gen AI ๐Ÿ‘‡

๐Ÿงฎ 1๏ธโƒฃ Math & Stats โ€“ Master algebra, probability & calculus โ€” the core of ML & AI.

๐Ÿ’ป 2๏ธโƒฃ Python & SQL โ€“ Learn Python (NumPy, APIs, OOPs) & SQL for data wrangling.

๐Ÿ“Š 3๏ธโƒฃ Excel โ€“ Still key for quick analysis, pivot tables & data cleaning.

๐Ÿ“ˆ 4๏ธโƒฃ Data Analysis โ€“ Do EDA, build dashboards (Power BI/Tableau), and visualize with Pandas.

๐Ÿค– 5๏ธโƒฃ Machine Learning โ€“ Start with regression, classification & model tuning.

๐Ÿง  6๏ธโƒฃ Deep Learning โ€“ Learn CNNs, RNNs & model deployment for CV & NLP.

โš™๏ธ 7๏ธโƒฃ Generative AI & LLMs โ€“ Explore RAG, AutoGPT & reasoning frameworks.

๐Ÿคฏ 8๏ธโƒฃ Agentic AI โ€“ Dive into LangChain, OpenAI APIs & intelligent agents.

๐ŸŽฏ Pro Tip:
Donโ€™t rush. Be consistent. Build projects, join Kaggle, and solve real problems โ€” thatโ€™s where real learning happens.
โค9