Python for Data Analysts
47.4K subscribers
469 photos
64 files
321 links
Find top Python resources from global universities, cool projects, and learning materials for data analytics.

For promotions: @coderfun

Useful links: heylink.me/DataAnalytics
Download Telegram
๐Ÿฒ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐˜๐—ต๐—ฒ ๐— ๐—ผ๐˜€๐˜ ๐—œ๐—ป-๐——๐—ฒ๐—บ๐—ฎ๐—ป๐—ฑ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€๐Ÿ˜

๐Ÿš€ Want to future-proof your career without spending a single rupee?๐Ÿ’ต

These 6 free online courses from top institutions like Google, Harvard, IBM, Stanford, and Cisco will help you master high-demand tech skills in 2025 โ€” from Data Analytics to Machine Learning๐Ÿ“Š๐Ÿง‘โ€๐Ÿ’ป

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4fbDejW

Each course is beginner-friendly, comes with certification, and helps you build your resume or switch careersโœ…๏ธ
โค1
1. What is the lambda function in Python?
Python Lambda Functions are anonymous function means that the function is without a name. As we already know that the def keyword is used to define a normal function in Python. Similarly, the lambda keyword is used to define an anonymous function in Python.
Eg. lambda_cube = lambda y: y*y*y

2. What is the difference between SQL and MySQL?
SQL is a query programming language that manages RDBMS. MySQL is a relational database management system that uses SQL. SQL is primarily used to query and operate database systems. MySQL allows you to handle, store, modify and delete data and store data in an organized way.

3. What are Filters in Power BI?
The term "Filter" is self-explanatory. Filters are mathematical and logical conditions applied to data to filter out essential information in rows and columns. The following are the variety of filters available in Power BI:
๐Ÿ‘‰ Manual filters
๐Ÿ‘‰ Auto filters
๐Ÿ‘‰ Include/Exclude filters
๐Ÿ‘‰ Drill-down filters
๐Ÿ‘‰ Cross Drill filters
โค4
๐Ÿš€๐—ง๐—ผ๐—ฝ ๐Ÿฏ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ-๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฒ๐—ฑ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Want to boost your tech career? Learn Python for FREE with Google-certified courses!
Perfect for beginnersโ€”no expensive bootcamps needed.

๐Ÿ”ฅ Learn Python for AI, Data, Automation & More!

๐Ÿ“๐—ฆ๐˜๐—ฎ๐—ฟ๐˜ ๐—ก๐—ผ๐˜„๐Ÿ‘‡

https://pdlink.in/42okGqG

โœ… Future You Will Thank You!
โค1
10 Data Analyst Project Ideas to Boost Your Portfolio

โœ… Sales Dashboard (Power BI/Tableau) โ€“ Analyze revenue, region-wise trends, and KPIs
โœ… HR Analytics โ€“ Employee attrition, retention trends using Excel/SQL/Power BI
โœ… Customer Segmentation (SQL + Excel) โ€“ Analyze buying patterns and group customers
โœ… Survey Data Analysis โ€“ Clean, visualize, and interpret survey insights
โœ… E-commerce Data Analysis โ€“ Funnel analysis, product trends, and revenue mapping
โœ… Superstore Sales Analysis โ€“ Use public datasets to show time series and cohort trends
โœ… Marketing Campaign Effectiveness โ€“ SQL + A/B test analysis with statistical methods
โœ… Financial Dashboard โ€“ Visualize profit, loss, and KPIs using Power BI
โœ… YouTube/Instagram Analytics โ€“ Use social media data to find audience behavior insights
โœ… SQL Reporting Automation โ€“ Build and schedule automated SQL reports and visualizations

React โค๏ธ for more
โค8
๐—ง๐—ต๐—ฒ ๐—•๐—ฒ๐˜€๐˜ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐Ÿฏ๐Ÿฌ-๐——๐—ฎ๐˜† ๐—ฅ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ ๐˜๐—ผ ๐—ฆ๐˜๐—ฎ๐—ฟ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—๐—ผ๐˜‚๐—ฟ๐—ป๐—ฒ๐˜†๐Ÿ˜

๐Ÿ“Š If I had to restart my Data Science journey in 2025, this is where Iโ€™d beginโœจ๏ธ

Meet 30 Days of Data Science โ€” a free and beginner-friendly GitHub repository that guides you through the core fundamentals of data science in just one month๐Ÿง‘โ€๐ŸŽ“๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4mfNdXR

Simply bookmark the page, pick Day 1, and begin your journeyโœ…๏ธ
โค1
Essential Python Libraries for Data Science

- Numpy: Fundamental for numerical operations, handling arrays, and mathematical functions.

- SciPy: Complements Numpy with additional functionalities for scientific computing, including optimization and signal processing.

- Pandas: Essential for data manipulation and analysis, offering powerful data structures like DataFrames.

- Matplotlib: A versatile plotting library for creating static, interactive, and animated visualizations.

- Keras: A high-level neural networks API, facilitating rapid prototyping and experimentation in deep learning.

- TensorFlow: An open-source machine learning framework widely used for building and training deep learning models.

- Scikit-learn: Provides simple and efficient tools for data mining, machine learning, and statistical modeling.

- Seaborn: Built on Matplotlib, Seaborn enhances data visualization with a high-level interface for drawing attractive and informative statistical graphics.

- Statsmodels: Focuses on estimating and testing statistical models, providing tools for exploring data, estimating models, and statistical testing.

- NLTK (Natural Language Toolkit): A library for working with human language data, supporting tasks like classification, tokenization, stemming, tagging, parsing, and more.

These libraries collectively empower data scientists to handle various tasks, from data preprocessing to advanced machine learning implementations.

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค2
๐Ÿณ ๐— ๐˜‚๐˜€๐˜-๐—ž๐—ป๐—ผ๐˜„ ๐—ฆ๐—ค๐—Ÿ ๐—–๐—ผ๐—ป๐—ฐ๐—ฒ๐—ฝ๐˜๐˜€ ๐—˜๐˜ƒ๐—ฒ๐—ฟ๐˜† ๐—”๐˜€๐—ฝ๐—ถ๐—ฟ๐—ถ๐—ป๐—ด ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜ ๐—ฆ๐—ต๐—ผ๐˜‚๐—น๐—ฑ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐Ÿ˜

If youโ€™re serious about becoming a data analyst, thereโ€™s no skipping SQL. Itโ€™s not just another technical skill โ€” itโ€™s the core language for data analytics.๐Ÿ“Š

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/44S3Xi5

This guide covers 7 key SQL concepts that every beginner must learnโœ…๏ธ
โค1
๐— ๐—ผ๐˜€๐˜ ๐—”๐˜€๐—ธ๐—ฒ๐—ฑ ๐—ฆ๐—ค๐—Ÿ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐—ค๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐—ฎ๐˜ ๐— ๐—”๐—”๐—ก๐—š ๐—–๐—ผ๐—บ๐—ฝ๐—ฎ๐—ป๐—ถ๐—ฒ๐˜€๐Ÿ”ฅ๐Ÿ”ฅ

1. How do you retrieve all columns from a table?

SELECT * FROM table_name;


2. What SQL statement is used to filter records?

SELECT * FROM table_name
WHERE condition;

The WHERE clause is used to filter records based on a specified condition.


3. How can you join multiple tables? Describe different types of JOINs.

SELECT columns
FROM table1
JOIN table2 ON table1.column = table2.column
JOIN table3 ON table2.column = table3.column;

Types of JOINs:

1. INNER JOIN: Returns records with matching values in both tables

SELECT * FROM table1
INNER JOIN table2 ON table1.column = table2.column;

2. LEFT JOIN (or LEFT OUTER JOIN): Returns all records from the left table and matched records from the right table. Unmatched records will have NULL values.

SELECT * FROM table1
LEFT JOIN table2 ON table1.column = table2.column;

3. RIGHT JOIN (or RIGHT OUTER JOIN): Returns all records from the right table and matched records from the left table. Unmatched records will have NULL values.

SELECT * FROM table1
RIGHT JOIN table2 ON table1.column = table2.column;

4. FULL JOIN (or FULL OUTER JOIN): Returns records when there is a match in either left or right table. Unmatched records will have NULL values.

SELECT * FROM table1
FULL JOIN table2 ON table1.column = table2.column;


4. What is the difference between WHERE and HAVING clauses?

WHERE: Filters records before any groupings are made.

SELECT * FROM table_name
WHERE condition;

HAVING: Filters records after groupings are made.

SELECT column, COUNT(*)
FROM table_name
GROUP BY column
HAVING COUNT(*) > value;


5. How do you count the number of records in a table?

SELECT COUNT(*) FROM table_name;

This query counts all the records in the specified table.

6. How do you calculate average, sum, minimum, and maximum values in a column?

Average: SELECT AVG(column_name) FROM table_name;

Sum: SELECT SUM(column_name) FROM table_name;

Minimum: SELECT MIN(column_name) FROM table_name;

Maximum: SELECT MAX(column_name) FROM table_name;


7. What is a subquery, and how do you use it?

Subquery: A query nested inside another query

SELECT * FROM table_name
WHERE column_name = (SELECT column_name FROM another_table WHERE condition);




Till then keep learning and keep exploring ๐Ÿ™Œ
โค3
๐—”๐—ฐ๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฆ๐—ค๐—Ÿ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐˜„๐—ถ๐˜๐—ต ๐—ง๐—ต๐—ฒ๐˜€๐—ฒ ๐Ÿฏ๐Ÿฌ ๐— ๐—ผ๐˜€๐˜-๐—”๐˜€๐—ธ๐—ฒ๐—ฑ ๐—ค๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป๐˜€! ๐Ÿ˜

๐Ÿคฆ๐Ÿปโ€โ™€๏ธStruggling with SQL interviews? Not anymore!๐Ÿ“

SQL interviews can be challenging, but preparation is the key to success. Whether youโ€™re aiming for a data analytics role or just brushing up, this resource has got your back!๐ŸŽŠ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4olhd6z

Letโ€™s crack that interview together!โœ…๏ธ
โค2
SQL Essential Concepts for Data Analyst Interviews โœ…

1. SQL Syntax: Understand the basic structure of SQL queries, which typically include SELECT, FROM, WHERE, GROUP BY, HAVING, and ORDER BY clauses. Know how to write queries to retrieve data from databases.

2. SELECT Statement: Learn how to use the SELECT statement to fetch data from one or more tables. Understand how to specify columns, use aliases, and perform simple arithmetic operations within a query.

3. WHERE Clause: Use the WHERE clause to filter records based on specific conditions. Familiarize yourself with logical operators like =, >, <, >=, <=, <>, AND, OR, and NOT.

4. JOIN Operations: Master the different types of joinsโ€”INNER JOIN, LEFT JOIN, RIGHT JOIN, and FULL JOINโ€”to combine rows from two or more tables based on related columns.

5. GROUP BY and HAVING Clauses: Use the GROUP BY clause to group rows that have the same values in specified columns and aggregate data with functions like COUNT(), SUM(), AVG(), MAX(), and MIN(). The HAVING clause filters groups based on aggregate conditions.

6. ORDER BY Clause: Sort the result set of a query by one or more columns using the ORDER BY clause. Understand how to sort data in ascending (ASC) or descending (DESC) order.

7. Aggregate Functions: Be familiar with aggregate functions like COUNT(), SUM(), AVG(), MIN(), and MAX() to perform calculations on sets of rows, returning a single value.

8. DISTINCT Keyword: Use the DISTINCT keyword to remove duplicate records from the result set, ensuring that only unique records are returned.

9. LIMIT/OFFSET Clauses: Understand how to limit the number of rows returned by a query using LIMIT (or TOP in some SQL dialects) and how to paginate results with OFFSET.

10. Subqueries: Learn how to write subqueries, or nested queries, which are queries within another SQL query. Subqueries can be used in SELECT, WHERE, FROM, and HAVING clauses to provide more specific filtering or selection.

11. UNION and UNION ALL: Know the difference between UNION and UNION ALL. UNION combines the results of two queries and removes duplicates, while UNION ALL combines all results including duplicates.

12. IN, BETWEEN, and LIKE Operators: Use the IN operator to match any value in a list, the BETWEEN operator to filter within a range, and the LIKE operator for pattern matching with wildcards (%, _).

13. NULL Handling: Understand how to work with NULL values in SQL, including using IS NULL, IS NOT NULL, and handling nulls in calculations and joins.

14. CASE Statements: Use the CASE statement to implement conditional logic within SQL queries, allowing you to create new fields or modify existing ones based on specific conditions.

15. Indexes: Know the basics of indexing, including how indexes can improve query performance by speeding up the retrieval of rows. Understand when to create an index and the trade-offs in terms of storage and write performance.

16. Data Types: Be familiar with common SQL data types, such as VARCHAR, CHAR, INT, FLOAT, DATE, and BOOLEAN, and understand how to choose the appropriate data type for a column.

17. String Functions: Learn key string functions like CONCAT(), SUBSTRING(), REPLACE(), LENGTH(), TRIM(), and UPPER()/LOWER() to manipulate text data within queries.

18. Date and Time Functions: Master date and time functions such as NOW(), CURDATE(), DATEDIFF(), DATEADD(), and EXTRACT() to handle and manipulate date and time data effectively.

19. INSERT, UPDATE, DELETE Statements: Understand how to use INSERT to add new records, UPDATE to modify existing records, and DELETE to remove records from a table. Be aware of the implications of these operations, particularly in maintaining data integrity.

20. Constraints: Know the role of constraints like PRIMARY KEY, FOREIGN KEY, UNIQUE, NOT NULL, and CHECK in maintaining data integrity and ensuring valid data entry in your database.

Here you can find SQL Interview Resources๐Ÿ‘‡
https://t.iss.one/DataSimplifier

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
โค1
Essential Python Libraries for Data Analytics ๐Ÿ˜„๐Ÿ‘‡

Python Free Resources: https://t.iss.one/pythondevelopersindia

1. NumPy:
- Efficient numerical operations and array manipulation.

2. Pandas:
- Data manipulation and analysis with powerful data structures (DataFrame, Series).

3. Matplotlib:
- 2D plotting library for creating visualizations.

4. Scikit-learn:
- Machine learning toolkit for classification, regression, clustering, etc.

5. TensorFlow:
- Open-source machine learning framework for building and deploying ML models.

6. PyTorch:
- Deep learning library, particularly popular for neural network research.

7. Django:
- High-level web framework for building robust, scalable web applications.

8. Flask:
- Lightweight web framework for building smaller web applications and APIs.

9. Requests:
- HTTP library for making HTTP requests.

10. Beautiful Soup:
- Web scraping library for pulling data out of HTML and XML files.

As a beginner, you can start with Pandas and Numpy libraries for data analysis. If you want to transition from Data Analyst to Data Scientist, then you can start applying ML libraries like Scikit-learn, Tensorflow, Pytorch, etc. in your data projects.

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
โค4
Python Data Types ๐Ÿ‘†
โค4๐Ÿ‘1