Python for Data Analysts
47.4K subscribers
469 photos
64 files
321 links
Find top Python resources from global universities, cool projects, and learning materials for data analytics.

For promotions: @coderfun

Useful links: heylink.me/DataAnalytics
Download Telegram
How to revolutionize Hollywood with AI.

Unlock new possibilities:

1. Voice Cloning

Clone voices of Hollywood icons:

• Legally clone and use voices with permission.
• Recreate iconic voices for new projects.
• Preserve legendary performances for future generations.

2. Custom Voices

Create unique voices for your projects:

• Generate up to 20 seconds of dialogue.
• Select from preset voice options or create your own.

3. Lip Sync Tool

Bring still characters to life:

• Use ElevenLabs's Lip Sync tool.
• Select a face and add a script.
• Generate videos with synchronized lip movements.

AI is reshaping the industry, voice cloning is part of a broader trend.

Filmmakers can now recreate voices of iconic actors.
2
Data Analytics isn't rocket science. It's just a different language.

Here's a beginner's guide to the world of data analytics:

1) Understand the fundamentals:
- Mathematics
- Statistics
- Technology

2) Learn the tools:
- SQL
- Python
- Excel (yes, it's still relevant!)

3) Understand the data:
- What do you want to measure?
- How are you measuring it?
- What metrics are important to you?

4) Data Visualization:
- A picture is worth a thousand words

5) Practice:
- There's no better way to learn than to do it yourself.

Data Analytics is a valuable skill that can help you make better decisions, understand your audience better, and ultimately grow your business.

It's never too late to start learning!
2
Python for Data Analysis: Must-Know Libraries 👇👇

Python is one of the most powerful tools for Data Analysts, and these libraries will supercharge your data analysis workflow by helping you clean, manipulate, and visualize data efficiently.

🔥 Essential Python Libraries for Data Analysis:

Pandas – The go-to library for data manipulation. It helps in filtering, grouping, merging datasets, handling missing values, and transforming data into a structured format.

📌 Example: Loading a CSV file and displaying the first 5 rows:

import pandas as pd df = pd.read_csv('data.csv') print(df.head()) 


NumPy – Used for handling numerical data and performing complex calculations. It provides support for multi-dimensional arrays and efficient mathematical operations.

📌 Example: Creating an array and performing basic operations:

import numpy as np arr = np.array([10, 20, 30]) print(arr.mean()) # Calculates the average 


Matplotlib & Seaborn – These are used for creating visualizations like line graphs, bar charts, and scatter plots to understand trends and patterns in data.

📌 Example: Creating a basic bar chart:

import matplotlib.pyplot as plt plt.bar(['A', 'B', 'C'], [5, 7, 3]) plt.show() 


Scikit-Learn – A must-learn library if you want to apply machine learning techniques like regression, classification, and clustering on your dataset.

OpenPyXL – Helps in automating Excel reports using Python by reading, writing, and modifying Excel files.

💡 Challenge for You!
Try writing a Python script that:
1️⃣ Reads a CSV file
2️⃣ Cleans missing data
3️⃣ Creates a simple visualization

React with ♥️ if you want me to post the script for above challenge! ⬇️

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
9
Essential NumPy Functions for Data Analysis

Array Creation:

np.array() - Create an array from a list.

np.zeros((rows, cols)) - Create an array filled with zeros.

np.ones((rows, cols)) - Create an array filled with ones.

np.arange(start, stop, step) - Create an array with a range of values.


Array Operations:

np.sum(array) - Calculate the sum of array elements.

np.mean(array) - Compute the mean.

np.median(array) - Calculate the median.

np.std(array) - Compute the standard deviation.


Indexing and Slicing:

array[start:stop] - Slice an array.

array[row, col] - Access a specific element.

array[:, col] - Select all rows for a column.


Reshaping and Transposing:

array.reshape(new_shape) - Reshape an array.

array.T - Transpose an array.


Random Sampling:

np.random.rand(rows, cols) - Generate random numbers in [0, 1).

np.random.randint(low, high, size) - Generate random integers.


Mathematical Operations:

np.dot(A, B) - Compute the dot product.

np.linalg.inv(A) - Compute the inverse of a matrix.

Here you can find essential Python Interview Resources👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like this post for more resources like this 👍♥️

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
1
Data Analyst Learning Plan in 2025

|-- Week 1: Introduction to Data Analytics
| |-- What is Data Analytics?
| |-- Roles & Responsibilities of a Data Analyst
| |-- Data Analytics Workflow
| |-- Types of Data (Structured, Unstructured, Semi-structured)
|
|-- Week 2: Excel for Data Analysis
| |-- Excel Basics & Interface
| |-- Data Cleaning & Preparation
| |-- Formulas, Functions, Pivot Tables
| |-- Dashboards & Reporting in Excel
|
|-- Week 3: SQL for Data Analysts
| |-- SQL Basics: SELECT, WHERE, ORDER BY
| |-- Aggregations & GROUP BY
| |-- Joins: INNER, LEFT, RIGHT, FULL
| |-- CTEs, Subqueries & Window Functions
|
|-- Week 4: Python for Data Analysis
| |-- Python Basics (Variables, Data Types, Loops)
| |-- Data Analysis with Pandas
| |-- Data Visualization with Matplotlib & Seaborn
| |-- Exploratory Data Analysis (EDA)
|
|-- Week 5: Statistics & Probability
| |-- Descriptive Statistics
| |-- Probability Theory Basics
| |-- Distributions (Normal, Binomial, Poisson)
| |-- Hypothesis Testing & A/B Testing
|
|-- Week 6: Data Cleaning & Transformation
| |-- Handling Missing Values
| |-- Duplicates, Outliers, and Data Formatting
| |-- Data Parsing & Regex
| |-- Data Normalization
|
|-- Week 7: Data Visualization Tools
| |-- Power BI Basics
| |-- Creating Reports and Dashboards
| |-- Data Modeling in Power BI
| |-- Filters, Slicers, DAX Basics
|
|-- Week 8: Advanced Excel & Power BI
| |-- Advanced Charts & Dashboards
| |-- Time Intelligence in Power BI
| |-- Calculated Columns & Measures (DAX)
| |-- Performance Optimization Tips
|
|-- Week 9: Business Acumen & Domain Knowledge
| |-- KPIs & Business Metrics
| |-- Understanding Financial, Marketing, Sales Data
| |-- Creating Insightful Reports
| |-- Storytelling with Data
|
|-- Week 10: Real-World Projects & Portfolio
| |-- End-to-End Project on E-commerce/Sales
| |-- Collecting & Cleaning Data
| |-- Analyzing Trends & Presenting Insights
| |-- Uploading Projects on GitHub
|
|-- Week 11: Tools for Data Analysts
| |-- Jupyter Notebooks
| |-- Google Sheets & Google Data Studio
| |-- Tableau Overview
| |-- APIs & Web Scraping (Intro only)
|
|-- Week 12: Career Preparation
| |-- Resume & LinkedIn for Data Analysts
| |-- Common Interview Questions (SQL, Python, Case Studies)
| |-- Mock Interviews & Peer Reviews

Join our WhatsApp channel: https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like this post for more content like this 👍♥️

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
3
📚👀🚀Preparing for a Data science/ Data Analytics interview can be challenging, but with the right strategy, you can enhance your chances of success. Here are some key tips to assist you in getting ready:

Review Fundamental Concepts: Ensure you have a strong grasp of statistics, probability, linear algebra, data structures, algorithms, and programming languages like Python, R, and SQL.

Refresh Machine Learning Knowledge: Familiarize yourself with various machine learning algorithms, including supervised, unsupervised, and reinforcement learning.

Practice Coding: Sharpen your coding skills by solving data science-related problems on platforms like HackerRank, LeetCode, and Kaggle.

Build a Project Portfolio: Showcase your proficiency by creating a portfolio highlighting projects covering data cleaning, wrangling, exploratory data analysis, and machine learning.

Hone Communication Skills: Practice articulating complex technical ideas in simple terms, as effective communication is vital for data scientists when interacting with non-technical stakeholders.

Research the Company: Gain insights into the company's operations, industry, and how they leverage data to solve challenges.

🧠👍By adhering to these guidelines, you'll be well-prepared for your upcoming data science interview. Best of luck!

Hope this helps 👍❤️:⁠-⁠)

👍👀Be the first one to know the latest Job openings
https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
1
𝗪𝗮𝗻𝘁 𝘁𝗼 𝗠𝗮𝘀𝘁𝗲𝗿 𝗧𝗲𝗰𝗵 𝗦𝗸𝗶𝗹𝗹𝘀 𝗧𝗵𝗮𝘁 𝗖𝗼𝗺𝗽𝗮𝗻𝗶𝗲𝘀 𝗔𝗿𝗲 𝗛𝗶𝗿𝗶𝗻𝗴 𝗙𝗼𝗿?😍

If you’re looking to land a job in tech or simply want to upskill without spending money, this is your golden chance✨️📌

We’ve handpicked 5 YouTube channels that teach 5 in-demand tech skills for FREE. These skills are widely sought after by employers in 2025 — from startups to top MNCs🧑‍💻

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/46n3hCs

Here’s your roadmap — pick one, stay consistent, and grow daily✅️
1
Python Projects
2
𝟯 𝗣𝗼𝘄𝗲𝗿𝗳𝘂𝗹 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘀𝘁 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 𝗧𝗵𝗮𝘁 𝗖𝗮𝗻 𝗟𝗮𝘂𝗻𝗰𝗵 𝗬𝗼𝘂𝗿 𝗖𝗮𝗿𝗲𝗲𝗿😍

Want to become a Data Analyst but confused about where to begin? 🧠📊

Here are 3 powerful certifications from Microsoft, Meta, and IBM that don’t just teach you—they help you build real portfolio projects and become job-ready👨‍💻📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4o17kul

Ready to start your journey?✨️✅️
Roadmap to become a data analyst

1. Foundation Skills:
•Strengthen Mathematics: Focus on statistics relevant to data analysis.
•Excel Basics: Master fundamental Excel functions and formulas.

2. SQL Proficiency:
•Learn SQL Basics: Understand SELECT statements, JOINs, and filtering.
•Practice Database Queries: Work with databases to retrieve and manipulate data.

3. Excel Advanced Techniques:
•Data Cleaning in Excel: Learn to handle missing data and outliers.
•PivotTables and PivotCharts: Master these powerful tools for data summarization.

4. Data Visualization with Excel:
•Create Visualizations: Learn to build charts and graphs in Excel.
•Dashboard Creation: Understand how to design effective dashboards.

5. Power BI Introduction:
•Install and Explore Power BI: Familiarize yourself with the interface.
•Import Data: Learn to import and transform data using Power BI.

6. Power BI Data Modeling:
•Relationships: Understand and establish relationships between tables.
•DAX (Data Analysis Expressions): Learn the basics of DAX for calculations.

7. Advanced Power BI Features:
•Advanced Visualizations: Explore complex visualizations in Power BI.
•Custom Measures and Columns: Utilize DAX for customized data calculations.

8. Integration of Excel, SQL, and Power BI:
•Importing Data from SQL to Power BI: Practice connecting and importing data.
•Excel and Power BI Integration: Learn how to use Excel data in Power BI.

9. Business Intelligence Best Practices:
•Data Storytelling: Develop skills in presenting insights effectively.
•Performance Optimization: Optimize reports and dashboards for efficiency.

10. Build a Portfolio:
•Showcase Excel Projects: Highlight your data analysis skills using Excel.
•Power BI Projects: Feature Power BI dashboards and reports in your portfolio.

11. Continuous Learning and Certification:
•Stay Updated: Keep track of new features in Excel, SQL, and Power BI.
•Consider Certifications: Obtain relevant certifications to validate your skills.
3
📖 Data Analyst vs. Data Engineer vs. Data Scientist
5
𝟯 𝗙𝗿𝗲𝗲 𝗦𝗤𝗟 𝗬𝗼𝘂𝗧𝘂𝗯𝗲 𝗣𝗹𝗮𝘆𝗹𝗶𝘀𝘁𝘀 𝗧𝗵𝗮𝘁 𝗪𝗶𝗹𝗹 𝗠𝗮𝗸𝗲 𝗬𝗼𝘂 𝗮 𝗤𝘂𝗲𝗿𝘆 𝗣𝗿𝗼 𝗶𝗻 𝟮𝟬𝟮𝟱😍

Still stuck Googling “What is SQL?” every time you start a new project?💵

You’re not alone. Many beginners bounce between tutorials without ever feeling confident writing SQL queries on their own.👨‍💻✨️

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4f1F6LU

Let’s dive into the ones that are actually worth your time✅️
2
10 commonly asked data science interview questions along with their answers

1️⃣ What is the difference between supervised and unsupervised learning?
Supervised learning involves learning from labeled data to predict outcomes while unsupervised learning involves finding patterns in unlabeled data.

2️⃣ Explain the bias-variance tradeoff in machine learning.
The bias-variance tradeoff is a key concept in machine learning. Models with high bias have low complexity and over-simplify, while models with high variance are more complex and over-fit to the training data. The goal is to find the right balance between bias and variance.

3️⃣ What is the Central Limit Theorem and why is it important in statistics?
The Central Limit Theorem (CLT) states that the sampling distribution of the sample means will be approximately normally distributed regardless of the underlying population distribution, as long as the sample size is sufficiently large. It is important because it justifies the use of statistics, such as hypothesis testing and confidence intervals, on small sample sizes.

4️⃣ Describe the process of feature selection and why it is important in machine learning.
Feature selection is the process of selecting the most relevant features (variables) from a dataset. This is important because unnecessary features can lead to over-fitting, slower training times, and reduced accuracy.

5️⃣ What is the difference between overfitting and underfitting in machine learning? How do you address them?
Overfitting occurs when a model is too complex and fits the training data too well, resulting in poor performance on unseen data. Underfitting occurs when a model is too simple and cannot fit the training data well enough, resulting in poor performance on both training and unseen data. Techniques to address overfitting include regularization and early stopping, while techniques to address underfitting include using more complex models or increasing the amount of input data.

6️⃣ What is regularization and why is it used in machine learning?
Regularization is a technique used to prevent overfitting in machine learning. It involves adding a penalty term to the loss function to limit the complexity of the model, effectively reducing the impact of certain features.

7️⃣ How do you handle missing data in a dataset?
Handling missing data can be done by either deleting the missing samples, imputing the missing values, or using models that can handle missing data directly.

8️⃣ What is the difference between classification and regression in machine learning?
Classification is a type of supervised learning where the goal is to predict a categorical or discrete outcome, while regression is a type of supervised learning where the goal is to predict a continuous or numerical outcome.

9️⃣ Explain the concept of cross-validation and why it is used.
Cross-validation is a technique used to evaluate the performance of a machine learning model. It involves spliting the data into training and validation sets, and then training and evaluating the model on multiple such splits. Cross-validation gives a better idea of the model's generalization ability and helps prevent over-fitting.

🔟 What evaluation metrics would you use to evaluate a binary classification model?
Some commonly used evaluation metrics for binary classification models are accuracy, precision, recall, F1 score, and ROC-AUC. The choice of metric depends on the specific requirements of the problem.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.iss.one/datasciencefun

Like if you need similar content 😄👍

Hope this helps you 😊
3