Python вопросы с собеседований
25.1K subscribers
541 photos
23 videos
17 files
428 links
Вопросы с собеседований по Python

@workakkk - админ

@machinelearning_interview - вопросы с собесдований по Ml

@pro_python_code - Python

@data_analysis_ml - анализ данных на Python

@itchannels_telegram - 🔥 главное в ит

РКН: clck.ru/3FmrFd
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 Нужно временно отключить все принты — например, в проде или при юнит-тестах?

Этот трюк нужен, чтобы временно отключить принты не удаляя и не комментируя строки вручную.

На экране простой способ сделать это через контекстный менеджер — без сторонних библиотек и без комментирования строк.


import sys, os
from contextlib import contextmanager

@contextmanager
def suppress_print():
saved = sys.stdout
sys.stdout = open(os.devnull, 'w')
yield
sys.stdout.close()
sys.stdout = saved

Пример:

print("Это видно")
with suppress_print():
print("А это — нет")
print("Снова видно")


@python_job_interview - вопросы с собеседований Python
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥11🥰32
NVIDIA показала 7 простых «приемов» на Python, которые мгновенно ускоряют Data Science-пайплайны — без переписывания кода.

🔹 В чём идея?

Многие привычные библиотеки (pandas, NumPy, scikit-learn) можно заменить их GPU-версией, сохранив API.

Это даёт прирост скорости в десятки раз.

🟠 Drop-in замены в коде:
- pandas%load_ext cudf.pandas
- polars.collect(engine="gpu")
- scikit-learn%load_ext cuml.accel
- xgboostdevice="cuda"
- umap%load_ext cuml.accel
- hdbscan%load_ext cuml.accel
- networkx%env NX_CUGRAPH_AUTOCONFIG=True

🚀 Плюсы:
- Минимальные изменения кода (API почти идентичен).
- GPU-ускорение: от 10х до 100х быстрее на больших данных.
- Отлично подходит для ETL, ML и обработки сигналов.

Если ты работаешь с большими данными в Python, достаточно «заменить импорт» и получить колоссальный прирост скорости без боли и переписывания кода.

🚀 Подробнее: developer.nvidia.com/blog/7-drop-in-replacements-to-instantly-speed-up-your-python-data-science-workflows

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
9👍2🔥2
Как сделать помощника, который помнит контекст?

Голосовые ассистенты и LLM-сервисы — это круто, но... они часто не знают контекста. Или забывают, что вы им сказали полминуты назад.

Что, если помощник действительно помнил бы:

— кто вы
— что вы уже спрашивали
— и какие у вас были кейсы в прошлом?

На вебинаре Яндекса расскажут, как это реализовать через RAG + YDB:

🧠 память с помощью эмбеддингов
🔍 векторный поиск с фильтрацией
⚙️ масштабируемое и быстрое решение на SQL

Подходит как для внутренних ИИ-сервисов, так и для клиентских продуктов.
3
🔑 Сложная задача для собеседования по Python

Условие:
Рассмотрим следующий фрагмент кода с использованием asyncio и декораторов:

import asyncio

def cache(func):
cache = {}

async def wrapper(*args):
if args not in cache:
cache[args] = await func(*args)
return cache[args]

return wrapper

@cache
async def expensive_operation(x):
await asyncio.sleep(1)
return x * 2

async def main():
tasks = [expensive_operation(i) for i in range(3)]
results = await asyncio.gather(*tasks)
print(results)

asyncio.run(main())


Вопрос:
Что будет выведено в консоль и почему?

Варианты ответов:
1) [0, 2, 4] — вывод корректный, кеширование работает
2) RuntimeError — возникает из-за неправильного использования await в декораторе
3) [0, 0, 0] — возникает ошибка кеширования
4) [2, 2, 2] — декоратор мешает асинхронности

Правильный ответ: 3)

Пояснение:
1️⃣ Проблема в декораторе: обычный
def-декоратор не совместим с асинхронными функциями. При вызове await func(args) внутри wrapper, декоратор не дожидается выполнения корутины, возвращая None.
2️⃣ Почему
[0, 0, 0]:
cache[args] сохраняет не результат, а корутину (<coroutine object...>).
— При повторном обращении к кешу возвращается эта корутина, но
await вне декоратора не применяется.
— Фактически, все задачи получают первую сохраненную корутину (для x=0), которая всегда возвращает 0.
3️⃣ Чтобы исправить код нужно использовать
functools.wraps и сделать декоратор асинхронным.

Пишите свои варианты решения в комментариях 🔽

@python_job_interview
7👍4🔥1👌1
Forwarded from Machinelearning
Agent Lightning — ускоритель обучения для ИИ-агентов от Microsoft

Agent Lightning — это фреймворк для обучения и оптимизации LLM-агентов с помощью Reinforcement Learning без изменения их кода.

🧠 Поддерживает:
• LangChain
• AutoGen
• OpenAI Agents SDK
• и другие фреймворки на Python

🔧 Как он работает:
• Агент не нужно переписывать — он подключается как есть
• Вся его работа разбивается на отдельные шаги (эпизоды), которые можно анализировать
• Специальный алгоритм LightningRL оценивает, какие действия были полезны, а какие — нет
• Система может учитывать не только финальный результат, но и промежуточные сигналы (награды)
• Эти данные автоматически собираются и используются для дообучения агента

🔥 Преимущества:

• Не требует модификации логики агента
• Можно легко подключить к существующим пайплайнам
• Улучшает точность и устойчивость в сложных задачах: от генерации кода до Text-to-SQL

Отличный инструмент для всех, кто хочет сделать своих LLM-агентов.

🟠Проект: https://microsoft.com/en-us/research/project/agent-lightning/
🟠Статья: https://arxiv.org/abs/2508.03680
🟠Github: https://github.com/microsoft/agent-lightning

@ai_machinelearning_big_data


#agent #reinforcementlearning #mlops #llm #Microsoft
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍2🥰2
120 ключевых вопросов по SQL за 2025 год

Статья содержит 120 ключевых вопросов по SQL для собеседований, разделённых по темам и уровням сложности, с краткими пояснениями.

Основываясь на актуальных требованиях 2025 года, вопросы охватывают базу данных, оптимизацию, практические задачи и нюансы СУБД (MySQL, PostgreSQL, SQL Server).

🔜 Подробности
Please open Telegram to view this post
VIEW IN TELEGRAM
6👍4🔥3🥰2
🖥 Flet — фреймворк для создания кроссплатформенных приложений на Python

pip install flet

Flet — фреймворк, предоставляющий Flutter компоненты для разработки кроссплатформенных приложений на Python (разработчики обещают расширять список поддерживаемых языков).

Flet не использует какие-то SDK, не компилирует код Python в код Dart и весь UI отображается с помощью встроенного Web сервера.

🖥 GitHub
🟡 Доки
Please open Telegram to view this post
VIEW IN TELEGRAM
4🤔2👍1🔥1
Forwarded from Machinelearning
📌Новый прорыв в алгоритмах: найден способ считать кратчайшие пути быстрее Дейкстры

Метод преодоления "барьера сортировки" для задач кратчайшего пути в ориентированных графах.

Группа исследователей из университетов Синьхуа, Стенфорда и Института Макса Планика представили детерминированный алгоритм для решения задачи SSSP в ориентированных графах с неотрицательными вещественными весами, который работает за время, пропорциональное числу ребер, умноженному на логарифмический множитель, который растет медленнее, чем обычный логарифм.

Проблема поиска кратчайшего пути от одной вершины до всех остальных (SSSP) — одна из фундаментальных в теории графов, и её история тянется с 50-х годов прошлого века. Классический алгоритм Дейкстры, в связке с продвинутыми структурами данных, решает эту задачу за время, которое примерно пропорционально сумме числа рёбер и произведения числа вершин на логарифм от их же числа.

Именно этот множитель - число вершин, умноженное на логарифм, долгое время считался теоретическим минимумом, так как в своей основе алгоритм Дейкстры побочно сортирует вершины по расстоянию от источника. Этот предел известен как «барьер сортировки» и казался непреодолимым.


🟡Основная идея работы - гибрид из алгоритма Дейкстры и алгоритма Беллмана-Форда.

Алгоритм Дейкстры на каждом шаге выбирает из "границы" - множества еще не обработанных вершин ту, что находится ближе всего к источнику. Это и создает узкое место, так как размер границы может достигать величины, сопоставимой с общим числом вершин в графе, и на каждом шаге требуется находить минимум.

Алгоритм Беллмана-Форда, в свою очередь, не требует сортировки, но его сложность пропорциональна числу ребер, умноженному на количество шагов, что слишком долго.

🟡Новый подход использует рекурсию.

Вместо того чтобы поддерживать полную отсортированную границу, алгоритм фокусируется на ее сокращении. А если граница слишком велика, то запускается несколько шагов алгоритма Беллмана-Форда из ее вершин.

Это позволяет найти точное расстояние до некоторой части вершин, чьи кратчайшие пути коротки. Длинные же пути должны проходить через одну из "опорных" вершин, которых оказывается значительно меньше, чем вершин в исходной границе. Таким образом, сложная работа концентрируется только на этом небольшом наборе опорных точек.

🟡Принцип "разделяй и властвуй".

Он рекурсивно разбивает задачу на несколько уровней. На каждом уровне применяется вышеописанная техника сокращения границы, что позволяет значительно уменьшить объем работы на каждую вершину, поскольку логарифмический множитель эффективно делится на другой, более медленно растущий логарифмический член.

В итоге, путем подбора внутренних параметров алгоритма, которые являются специфическими функциями от логарифма числа вершин, и достигается итоговая временная сложность, пропорциональная числу ребер, умноженному на этот новый, более медленно растущий логарифмический множитель.

✔️ Зачем это нужно
— Быстрее решаются задачи в навигации, графах дорог, сетях и планировании.
— Доказано, что Дейкстра — не предел, и можно ещё ускорять поиск кратчайших путей.


🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #Sorting #Graphs #Algorithm
Please open Telegram to view this post
VIEW IN TELEGRAM
👍73🔥2
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 ЗАДАЧА С СОБЕСЕДОВАНИЯ: что выведет код?

Что выведет следующий код — и почему?


a = 256
b = 256
print(a is b)

x = 257
y = 257
print(x is y)


Ожидаешь True в обоих случаях? Не всё так просто.

📌 В Python целые числа от -5 до 256 кешируются.
То есть a и b указывают на один и тот же объект → a is b → True

Но x и y — это уже разные объекты, потому что 257 не кешируется → x is y → False

⚠️ is сравнивает объекты, а не значения.
Если хочешь сравнить значения — используй ==

💡 Вывод: даже базовые типы могут вести себя неожиданно, если сравнивать их через is.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍114🔥2