Python вопросы с собеседований
25K subscribers
518 photos
19 videos
17 files
414 links
Вопросы с собеседований по Python

@workakkk - админ

@machinelearning_interview - вопросы с собесдований по Ml

@pro_python_code - Python

@data_analysis_ml - анализ данных на Python

@itchannels_telegram - 🔥 главное в ит

РКН: clck.ru/3FmrFd
Download Telegram
🎙️ pytest-recording — плагин для записи и воспроизведения HTTP-запросов в тестах Инструмент использует VCR.py под капотом, чтобы сохранять сетевые взаимодействия в YAML-кассеты и переиспользовать их при последующих запусках. Достаточно добавить @pytest.mark.vcr к тесту и все запросы автоматически запишутся или возьмутся из кэша.

Особенно удобно для тестирования API, можно блокировать случайные сетевые вызовы через @pytest.mark.block_network и точечно разрешать только нужные хосты. Поддерживается тонкая настройка через vcr_config и работа в режиме перезаписи кассет.

🤖 GitHub

@python_job_interview
3👍3🔥3
Forwarded from Machinelearning
🔥 Google DeepMind представили новую open-source библиотеку на Python для сборки асинхронных AI‑пайплайнов в реальном времени!

Новая библиотека позволяет собирать AI-процессы из компонентов — как LEGO для ИИ-агентов.

🔧 Особенности:
- Построение асинхронных, компонуемых пайплайнов
- Поддержка Gemini и Gemini Live API
- Основана на asyncio
- Обрабатывает мультимодальные данные: текст, изображения, аудио
- Внутри готовые агенты: real-time агент, исследователь, live-комментатор

💡 Подходит для:
- Разработки ИИ-агентов
- Генеративных моделей, работающих в реальном времени
- Быстрой сборки MVP с мультимодальными возможностями

Установка:


pip install genai-processors


Открытый код, готовые компоненты и интеграция с API.

Repo: https://github.com/google-gemini/genai-processors
Blog: https://developers.googleblog.com/en/genai-processors/

@ai_machinelearning_big_data


#DeepMind #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍2🔥1
🐍 Совет дня для опытных Python-разработчиков

📌 Используй декораторы с параметрами — мощный приём для логирования, контроля, кэширования и кастомных проверок.

Пример: логгер, у которого можно задать уровень логирования через аргумент:


import functools
import logging

def log(level=logging.INFO):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
logging.log(level, f"Вызов {func.__name__} с args={args}, kwargs={kwargs}")
return func(*args, **kwargs)
return wrapper
return decorator

@log(logging.DEBUG)
def compute(x, y):
return x + y


Зачем это нужно:

Декоратор гибко настраивается;

Подходит для трассировки в проде и отладки в деве;

Сохраняет сигнатуру и docstring благодаря @functools.wraps.

⚠️ Совет: избегай вложенности >2 уровней и всегда пиши тесты на поведение декоратора.

Python даёт инструменты, которые выглядят магией, но работают стабильно — если знаешь, как ими пользоваться.
🔥52👍1🤔1
Forwarded from Python/ django
👾 GREMLLM — теперь у ваших багов есть сознание

GREMLLM — это необычный Python-класс, в котором все методы и свойства создаются динамически с помощью LLM. Вы описываете, *что за объект вы хотите*, и дальше GREMLLM сам решает, что должно происходить при вызове методов или обращении к полям.

📦 Установка:

pip install gremllm


🔧 Пример:



from gremllm import Gremllm

counter = Gremllm('counter')
counter.value = 5
counter.increment()
print(counter.value) # → 6?
print(counter.to_roman_numerals()) # → VI?


🧩 Возможности:
– Динамическое поведение: всё определяется "на лету" с помощью LLM
– Поддержка OpenAI, Claude, Gemini, и локальных моделей
– Wet Mode: можно строить цепочки вызовов (методы возвращают объекты)
– Verbose Mode: выводит, какой код был сгенерирован
– Умная обработка ошибок и настройка через наследование

⚠️ Это экспериментальный инструмент. Не для продакшена. Но очень интересен для изучения LLM-интеграций в Python-код.

🔗 Репозиторий: https://github.com/ur-whitelab/gremllm

@pythonl
3👍1🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🧠 Ускорь import в Python-проектах с помощью lazy loading — без изменения логики

Если у тебя проект с тяжёлыми модулями (`pandas`, torch, tensorflow`), но они не всегда нужны — не загружай их зря. Python позволяет **отложить импорт до первого использования**, через встроённый `importlib.

Вот как это выглядит на практике:



import importlib

# Обёртка для ленивого импорта
def lazy_import(name):
return importlib.util.LazyLoader(importlib.import_module(name))

# Использование
np = lazy_import('numpy')
# numpy ещё не загружен

# Теперь загрузится:
print(np.array([1, 2, 3]))
8👎2🔥1🥰1
🧠 Хитрая задача по Python — *ловушка с изменяемыми значениями по умолчанию*

Вопрос:
Что выведет следующий код?


def append_to_list(value, my_list=[]):
my_list.append(value)
return my_list

print(append_to_list(1))
print(append_to_list(2))
print(append_to_list(3))


Ваш ответ? 🤔

Многие ожидают:


[1]
[2]
[3]


Но фактически вывод будет:

python 
[1]
[1, 2]
[1, 2, 3]


🔍 Почему так происходит?

Параметр my_list=[] создаётся один раз — при определении функции. И он сохраняется между вызовами. То есть все вызовы функции используют один и тот же список по умолчанию.

Это одна из самых частых ошибок в продакшене.

Правильный способ — использовать None как значение по умолчанию:



def append_to_list(value, my_list=None):
if my_list is None:
my_list = []
my_list.append(value)
return my_list

Теперь:


[1]
[2]
[3]

Каждый вызов получает новый список.

⚠️ Если вы работаете с функциями, которые принимают списки или словари — всегда проверяйте, не мутируется ли значение между вызовами.
👍73🔥1