Python вопросы с собеседований
25.7K subscribers
581 photos
33 videos
17 files
464 links
Вопросы с собеседований по Python

@workakkk - админ

@machinelearning_interview - вопросы с собесдований по Ml

@pro_python_code - Python

@data_analysis_ml - анализ данных на Python

@itchannels_telegram - 🔥 главное в ит

РКН: clck.ru/3FmrFd
Download Telegram
🖥 Полный гайд по реальным SQL-вопросам с собеседований

Введение. Собеседования на позиции, связанные с данными (аналитики, инженеры, ученые данных), всё чаще включают нестандартные и продвинутые вопросы по SQL.

Большие технологические компании (Google, Amazon и др.) предъявляют высокие требования: важна не только правильность запроса, но и умение оптимизировать его и разбираться в реальных бизнес-данных.

В этом гайде мы разберем категории наиболее распространенных сложных SQL-задач с реальных собеседований – от платформ вроде DataLemur, LeetCode, StrataScratch – и подробно поясним решения.

Каждая задача сопровождена анализом: условие, оптимальный подход, используемые SQL-конструкции, возможные ошибки и финальное решение (для PostgreSQL и MySQL, с указанием различий где необходимо).

В конце добавлен отдельный раздел о современных базах данных, включая векторные БД (Pinecone, Weaviate, Milvus и др.), с примерами того, что могут спросить про них на собеседовании и как выглядят SQL-подобные запросы для работы с векторами.

📌 Читать гайд
Please open Telegram to view this post
VIEW IN TELEGRAM
👍52
🚀 CUDA Kernel Benchmarking Made Easy

robust-kbench предоставляет мощный набор инструментов для оценки и валидации CUDA-ядров, созданных с помощью больших языковых моделей. Он решает проблемы традиционных бенчмарков, предлагая надежные критерии оценки и проверку корректности.

🚀Основные моменты:
- Многочисленные настройки инициализации для более точной оценки
- Проверка корректности с учетом различных конфигураций входных данных
- Профилирование производительности для реальных сценариев
- Защита от манипуляций входными данными

📌 GitHub: https://github.com/SakanaAI/robust-kbench

#python
2🔥1
🔮 GENIE: Легкий движок синтеза речи на базе GPT-SoVITS

GENIE — это легкий движок для синтеза речи, который использует возможности GPT-SoVITS. Он предлагает высокую производительность на CPU, включая интеграцию TTS, конвертацию моделей ONNX и API сервер для удобного использования.

🚀 Основные моменты:
- Поддержка моделей GPT-SoVITS V2
- Оптимизирован для быстрого синтеза на CPU
- Включает предустановленные голосовые модели для мгновенного использования

📌 GitHub: https://github.com/High-Logic/Genie

#python
👍43👎1
✔️ Математика в машинном обучении» - бесплатный курс, который предназначен для тех, кто хочет углубить свои знания в области математики, необходимой для понимания и применения методов машинного обучения и искусственного интеллекта.

Этот курс охватывает ключевые математические концепции, лежащие в основе современных алгоритмов машинного обучения, таких как линейная алгебра, теория вероятностей, статистика и оптимизация.

Курс
Please open Telegram to view this post
VIEW IN TELEGRAM
👍73
🔥 Успех в IT = скорость + знания + окружение

Здесь ты найдёшь всё это — коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!

AI: https://t.iss.one/+EPEFXp67QfIyMjMy
Python: https://t.iss.one/+cq7O4sOHldY1ZTIy
Linux: t.iss.one/linuxacademiya
Собеседования DS: t.iss.one/machinelearning_interview
C++ t.iss.one/cpluspluc
Docker: t.iss.one/DevopsDocker
Хакинг: t.iss.one/linuxkalii
Devops: t.iss.one/DevOPSitsec
Data Science: t.iss.one/data_analysis_ml
Javascript: t.iss.one/javascriptv
C#: t.iss.one/csharp_1001_notes
Java: t.iss.one/java_library
Базы данных: t.iss.one/sqlhub
Python собеседования: t.iss.one/python_job_interview
Мобильная разработка: t.iss.one/mobdevelop
Golang: t.iss.one/Golang_google
React: t.iss.one/react_tg
Rust: t.iss.one/rust_code
ИИ: t.iss.one/vistehno
PHP: t.iss.one/phpshka
Android: t.iss.one/android_its
Frontend: t.iss.one/front
Big Data: t.iss.one/bigdatai
МАТЕМАТИКА: t.iss.one/data_math
Kubernets: t.iss.one/kubernetc
Разработка игр: https://t.iss.one/gamedev
Haskell: t.iss.one/haskell_tg
Физика: t.iss.one/fizmat

💼 Папка с вакансиями: t.iss.one/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.iss.one/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.iss.one/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.iss.one/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.iss.one/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: t.iss.one/memes_prog
🇬🇧Английский: t.iss.one/english_forprogrammers
🧠ИИ: t.iss.one/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.iss.one/addlist/BkskQciUW_FhNjEy

Подпишись, если хочешь быть в числе тех, кого зовут в топовые проекты!
4
🤖 Grass Bot: Автоматизация для Telegram

Grass Bot — это простой Python-бот для автоматизации задач в Telegram с поддержкой многопоточности и различных типов прокси. Идеален для управления несколькими аккаунтами и получения статистики.

🚀 Основные моменты:
- Многопоточность для повышения производительности
- Поддержка всех типов прокси
- Легкость в настройке аккаунтов и прокси

📌 GitHub: https://github.com/haspread/grass-bot

#python
👍31🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Python: функции-фабрики

Простой, но мощный трюк: генерация функций на лету через замыкания. Вместо дублирования логики можно одной фабрикой создавать десятки разных функций.

Хочешь больше таких фишек? Подписывайся на нас и каждый день получай свежие и нестандартные советы, которые реально прокачают твои навыки разработчика!



def make_pow(exp):
return lambda x: x ** exp

square = make_pow(2)
cube = make_pow(3)

print(square(4), cube(2))


#Python, #программирование, #кодинг, #разработка, #собеседование, #интервью, #PythonJobs, #DataScience, #MachineLearning, #AI, #backend, #webdev, #Django, #Flask, #FastAPI, #API, #REST, #asyncio, #многопоточность, #многозадачность, #библиотеки, #NumPy, #Pandas, #TensorFlow, #PyTorch, #SQL, #ORM, #SQLAlchemy, #тестирование, #unittest, #pytest, #TDD, #алгоритмы, #структурыданных, #OOP,
Please open Telegram to view this post
VIEW IN TELEGRAM
5👍3👎1🔥1
Forwarded from Python/ django
Media is too big
VIEW IN TELEGRAM
🖥 Что нового в Python 3.14 и почему стоит перейти

Python 3.14 вышел 7 октября 2025 года. Это новый стабильный релиз, который содержит как изменения в самом языке, так и улучшения в реализации, стандартной библиотеке, отладке и взаимодействии с многопоточностью.

Ниже - обзор ключевых нововведений, их смысла, применимости и возможных подводных камней.

🟠Основные нововведения (Release highlights)

- Отложенная (ленивая) оценка аннотаций - теперь аннотации не вычисляются сразу, что уменьшает накладные расходы.
- Поддержка нескольких интерпретаторов в рамках одного процесса через новый модуль.
- Новый синтаксис шаблонных строк (t-strings), который даёт больше контроля над статической и интерполированной частью.
- Более информативные сообщения об ошибках (например, подсказки для опечаток в ключевых словах).
- Поддержка формата сжатия Zstandard в стандартной библиотеке.
- Улучшенные возможности для отладки и профилирования, в том числе подключение к живому процессу без остановки.
- Улучшения в asyncio — команды для визуализации и диагностики задач, стеков ожидания и зависимостей.
- Уменьшение пауз сборщика мусора (gc) через инкрементальный сбор.
- Подсветка синтаксиса и автодополнение модулей в интерактивном режиме (REPL) по умолчанию.

🟠 Подробности и примеры

Ленивые аннотации - deferred evaluation of annotations

Раньше аннотации (для типов, документации, подсказок) могли вызывать вычисления прямо при определении функции или класса. Теперь они хранятся в виде «ленивых» структур и вычисляются по надобности. Это снижает накладные расходы на загрузку кода, особенно если аннотации сложные или содержат много forward-ссылок.

Есть модуль annotationlib, который позволяет исследовать аннотации программно и выбирать формат их получения — строки, объекты или отложенные ссылки.

Когда это особенно помогает:
- большие фреймворки, генерация кода, ORM, библиотеки с множеством аннотаций;
- ускорение импорта при старте приложений;
- уменьшение накладных расходов при работе с типами.

Что проверить при миграции:
- код, использующий __annotations__ напрямую, может требовать адаптации;
- убедитесь, что сторонние библиотеки, работающие с аннотациями, поддерживают новый формат.

Несколько интерпретаторов (subinterpreters)

Теперь в Python можно запускать несколько независимых интерпретаторов внутри одного процесса (модуль `concurrent.interpreters`).

Преимущества:
- изоляция между интерпретаторами (отдельная память, отдельный GIL);
- параллелизм на многоядерных системах;
- меньше накладных расходов, чем при использовании multiprocessing.

Ограничения:
- не все C-расширения поддерживают мультиинтерпретацию;
- коммуникация между интерпретаторами требует явных каналов (очереди, сообщения).

Это даёт реальную возможность распараллеливания CPU-задач без запуска отдельных процессов.

Template string literals (t-strings)

Новое синтаксическое средство — префикс t перед строкой, аналогично f'...'.
Результат — объект Template, который хранит текст и вставки по отдельности.


variety = 'Stilton'
template = t'Try some {variety} cheese!'

- Подробности
- Скачать
- Видеообзор
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9🔥53
📚 Работа и учёба отлично совмещаются на оплачиваемой стажировке GPB.Level Up: Кибербезопасность! Здесь гибкий график от 30 часов в неделю и удобные форматы: очно или гибридно в зависимости от направления.

GPB.Level Up: Кибербезопасность — стажировка в области информационной безопасности в Газпромбанке для старшекурсников, выпускников и начинающих специалистов. Вот и другие преимущества:
— зарплата 80 000 рублей со старта (gross при работе 40 часов в неделю)
— поддержка от опытных наставников и экспертов информационной безопасности
— доступ к 800+ курсам для развития soft и hard skills, Skillbox, Lerna и другим платформам
— перспективы для карьеры: более 90% участников GPB.Level Up: Кибербезопасность прошлого сезона остались работать в банке

Время показать свои таланты, жми на кнопку!
https://vk.cc/cQ15u2?erid=2W5zFJmqXqA
2
Каким будет вывод этого кода?
Anonymous Quiz
4%
[1, 4, 5 ]
14%
Ошибка
8%
[-2, -3]
58%
[1, -2, -3]
15%
Узнать ответ
🤔8👍6
🖥 Полный гайд: защита от SQL-инъекций для разработчиков

SQL-инъекции остаются одной из самых частых и опасных уязвимостей в веб-приложениях. Ошибка в одном запросе — и злоумышленник получает доступ к базе данных, паролям и пользовательским данным.

В этом материале — полный практический разбор:
как именно происходят SQL-инъекции, какие ошибки разработчиков к ним приводят, как их распознать в коде и главное — как защититься.

Разберём реальные примеры на Python, PHP и Go, посмотрим, как атакующий «взламывает» запрос, и научимся писать безопасный код с параметризованными запросами и ORM.

Это не теория, а руководство, которое поможет понять уязвимость изнутри и навсегда закрыть её в своих проектах.

👉 Читать гайд
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍3🔥1
🖥 Практический гайд по автоматизации процессов на Python

Перед вами подробный практический гайд по автоматизации процессов на Python для продвинутых разработчиков. Он фокусируется на промышленном уровне качества: архитектура, надёжность, наблюдаемость, упаковка и деплой. В каждом разделе — конкретные паттерны и готовые фрагменты кода.

✔️ Подробнее
Please open Telegram to view this post
VIEW IN TELEGRAM
5👍1
🧠 Создайте своего ChatGPT с nanochat

nanochat — это минималистичный фреймворк для создания LLM, аналогичного ChatGPT, с возможностью запуска на одном узле. Он включает все этапы от токенизации до веб-сервиса с простым интерфейсом, позволяя взаимодействовать с вашим собственным языковым моделью.

🚀Основные моменты:
- Полный стек для создания LLM в одном коде.
- Легкий в использовании и настройке.
- Поддержка различных моделей с разными затратами.
- Возможность оценки и анализа производительности.

📌 GitHub: https://github.com/karpathy/nanochat

#python
5👎2👍1🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
Один One Day Offer вам или целых три — всем? 😉

25 октября Сбер проведёт сразу три экспресс-отбора кандидатов в две команды: GigaData и Kandinsky. Чем вам предстоит заниматься 👇

✔️ Развивать GigaData — внутреннюю платформу Сбера, которая обрабатывает петабайты данных и миллиарды запросов в сутки. One Day Offer для Python‑разработчиков.

✔️ Работать над Kandinsky — обучать большие модели с нуля, собирать и подготавливать данные, исследовать самые эффективные методы дообучения моделей.

One Day Offer для Machine Learning Engineers с опытом в Deep Learning и компьютерном зрении (CV).
One Day Offer для Research и Deep Learning Engineers.

Выбирайте то, что больше подходит под ваши навыки, и регистрируйтесь на One Day Offer!
2👍1
🧩 sync-with-uv

Небольшой, но полезный пакет, который автоматизирует синхронизацию версий между uv.lock и .pre-commit-config.yaml.

Зачем это нужно:
- Часто версии инструментов (black, ruff, mypy и др.) расходятся: одно указано в lock-файле, другое — в pre-commit.
- В итоге могут воспроизводиться разные окружения и непредсказуемые ошибки.

Что делает sync-with-uv:
- Автоматически подтягивает версии из uv.lock в .pre-commit-config.yaml.
- Интегрируется как pre-commit hook.
- Поддерживает частичную синхронизацию — не затрагивает инструменты, для которых версии не заданы.

Итог: один источник правды для зависимостей, меньше ручной рутины и более стабильные пайплайны.

🔗 Репозиторий: https://github.com/tsvikas/sync-with-uv
👍52
🔥Свежий курс со Stepik: Linux: полный апгрейд твоих скиллов

Хочешь реально понимать, что происходит под капотом твоей системы, а не просто кликать по GUI?

Без глубокого знания базы ты не инженер - ты просто пользователь.

🔹 В курсе ты:

- Освоишь bash, grep, sed, awk - инструменты, которыми живут админы.
- Разберёшь права, процессы, сеть, файловую систему и научишься чинить всё, что падает.
- Настроишь SSH, firewall, systemd, crontab, демоны и автозапуск.
- Научишься анализировать логи, следить за нагрузкой, и не паниковать при 100% CPU.

💡 Формат: пошаговое объяснение базы и разбор важных практик по работе с Linux.

🎯 После курса ты: будешь чувствовать Linux как родную среду и забудешь, что такое “permission denied”.

🚀 Сейчас действуют скидка целых - 30%, не упусти реальный шанс прокачаться.

👉 Забирай место на курсе со скидкой
2🔥2👍1👎1
🐍 Хитрая задача с собеседования по Python

> Что выведет этот код и почему?


def extend_list(val, lst=[]):
lst.append(val)
return lst

list1 = extend_list(10)
list2 = extend_list(123, [])
list3 = extend_list('a')

print(list1, list2, list3)


Вопрос: Почему list1 и list3 одинаковы?

🔍 Разбор:

Аргументы по умолчанию в Python вычисляются один раз — в момент определения функции, а не при каждом вызове.

Поэтому lst=[] создаётся один раз и сохраняется между вызовами, если вы не передали свой список явно.

🧠 Что произойдет:

- extend_list(10) → использует общий список [], теперь он [10]

- extend_list(123, []) → создаёт новый список [123]

- extend_list('a') → снова использует общий список → [10, 'a']

👉 Результат:

[10, 'a'] [123] [10, 'a']

Как исправить:

Если вы хотите, чтобы по умолчанию создавался новый список при каждом вызове, делайте так:


def extend_list(val, lst=None):
if lst is None:
lst = []
lst.append(val)
return lst


Это классическая ловушка Python-интервью - mutable default arguments.

Проверяет, понимаешь ли ты, как работают значения по умолчанию и область памяти.
🔥7