یک ماژول بسیار خوب برای نمایش سریع داده ها در پایتون - pandasgui
برای عموم ما که بیشتر دنبال تحلیل داده ها هستیم، مشاهده سریع داده ها و بصری سازی آنها بسیار مهم است. قبلا در این پست (لینک) در خصوص ماژول Dtale یکی دیگر از ماژول های نمایش سریع داده ها صحبت کرده بودیم. ماژول pandasgui هم یکی از ماژول های بسیار خوب برای نمایش سریع داده ها و بصری سازی آنهاست. برای کاربران اکسل این ماژول بسیار جذاب است. به کمک این ماژول می توانید دیتافریم های خود را به راحتی بررسی کرده، فیلترهای خاص را در لحظه اعمال و مشاهده و نتیجه را رسم نمایید.
#pandasgui
پایتون برای مالی
🆔 t.iss.one/python4finance
🆔 ble.ir/python4finance
برای عموم ما که بیشتر دنبال تحلیل داده ها هستیم، مشاهده سریع داده ها و بصری سازی آنها بسیار مهم است. قبلا در این پست (لینک) در خصوص ماژول Dtale یکی دیگر از ماژول های نمایش سریع داده ها صحبت کرده بودیم. ماژول pandasgui هم یکی از ماژول های بسیار خوب برای نمایش سریع داده ها و بصری سازی آنهاست. برای کاربران اکسل این ماژول بسیار جذاب است. به کمک این ماژول می توانید دیتافریم های خود را به راحتی بررسی کرده، فیلترهای خاص را در لحظه اعمال و مشاهده و نتیجه را رسم نمایید.
#pandasgui
پایتون برای مالی
🆔 t.iss.one/python4finance
🆔 ble.ir/python4finance
❤31
یک کتابخانه بسیار سریع برای کار با داده ها-Polars
در پایتون برای مشاهده و دستکاری داده ها عموما از Pandas استفاده می کنیم. پانداس کتابخانه بسیار خوب و جامعی است اما وقتی تعداد داده ها بزرگ می شود کارایی پانداس رفته رفته کم می شود و سرعت پردازش هم پایین می آید. البته دلیل آن مشخص است. پانداس برای کار با Multithreading ساخته نشده است و در هر لحظه یک thread را پردازش می کند.
برای حل این موضوع از Polars استفاده می کنیم. Polars بر سرعت و کارایی تمرکز دارد. هنگام کار با میلیونها ردیف، پانداس دچار مشکل می شود اما با Polars به راحتی اجرا میشوند.
یک ویژگی جالب دیگر Polars توانایی پردازش داده های با حجم بالاتر از RAM سیستم است.
کار با polars بسیار ساده است و توابع آن شبیه پانداس نوشته است.
اگر به این ماژول علاقه مند شدید سری به این آدرس بزنید.
در تصویر این پست، مقایسه چند ماژول متداول کار با داده ها برای کار با یک دیتافریم بزرگ نشان داده شده است.
#polars
#pandas
#dataframe
پایتون برای مالی
🆔 t.iss.one/python4finance
🆔 ble.ir/python4finance
در پایتون برای مشاهده و دستکاری داده ها عموما از Pandas استفاده می کنیم. پانداس کتابخانه بسیار خوب و جامعی است اما وقتی تعداد داده ها بزرگ می شود کارایی پانداس رفته رفته کم می شود و سرعت پردازش هم پایین می آید. البته دلیل آن مشخص است. پانداس برای کار با Multithreading ساخته نشده است و در هر لحظه یک thread را پردازش می کند.
برای حل این موضوع از Polars استفاده می کنیم. Polars بر سرعت و کارایی تمرکز دارد. هنگام کار با میلیونها ردیف، پانداس دچار مشکل می شود اما با Polars به راحتی اجرا میشوند.
یک ویژگی جالب دیگر Polars توانایی پردازش داده های با حجم بالاتر از RAM سیستم است.
کار با polars بسیار ساده است و توابع آن شبیه پانداس نوشته است.
اگر به این ماژول علاقه مند شدید سری به این آدرس بزنید.
در تصویر این پست، مقایسه چند ماژول متداول کار با داده ها برای کار با یک دیتافریم بزرگ نشان داده شده است.
#polars
#pandas
#dataframe
پایتون برای مالی
🆔 t.iss.one/python4finance
🆔 ble.ir/python4finance
❤35
بر اساس گزارش چشمانداز روندهای فناوری ۲۰۲۵ مکینزی، در حوزه توسعه ابزارهای هوش مصنوعی، دانشمند داده با اختلاف بالاترین شغل مورد تقاضا در سال های 2021 تا 2024 بوده است و تسلط به یادگیری ماشین و زبان پایتون از اصلی ترین نیازمندیها بوده است.
🌐 لینک گزارش
#McKinsey
#data_science
پایتون برای مالی
🆔 t.iss.one/python4finance
🆔 ble.ir/python4finance
🌐 لینک گزارش
#McKinsey
#data_science
پایتون برای مالی
🆔 t.iss.one/python4finance
🆔 ble.ir/python4finance
❤18