🧐 Зоопарк моделей в ML: с чего начать?
Открываешь статью по машинному обучению — и в тебя летят слова: трансформеры, бустинги, SVM, регрессии.
Кажется, придётся учить всё это, иначе в ML не пустят.
Хорошая новость: 90% задач можно закрыть 2–3 классическими методами. Разберёшь их — уже сможешь собирать работающие проекты. А хайповые названия подождут.
Важно: не распыляйся на всё подряд. Начни с базового — это фундамент, на котором держится остальное.
👉 Успей попасть на курс «ML для старта в Data Science» (https://clc.to/Y2cDww)
Открываешь статью по машинному обучению — и в тебя летят слова: трансформеры, бустинги, SVM, регрессии.
Кажется, придётся учить всё это, иначе в ML не пустят.
Хорошая новость: 90% задач можно закрыть 2–3 классическими методами. Разберёшь их — уже сможешь собирать работающие проекты. А хайповые названия подождут.
Важно: не распыляйся на всё подряд. Начни с базового — это фундамент, на котором держится остальное.
👉 Успей попасть на курс «ML для старта в Data Science» (https://clc.to/Y2cDww)
Какое утверждение верно для работы с замыканиями и областями видимости в Python при использовании nonlocal и global?
👾 — nonlocal и global изменяют значение переменной только в момент объявления функции, а не при выполнении
👍 — nonlocal ищет переменную в ближайшей внешней области видимости, не включая глобальную, и изменяет её по ссылке
🥰 — global и nonlocal идентичны в поведении, но nonlocal можно использовать только внутри вложенных функций
⚡️ — Если переменная помечена как nonlocal, Python создаёт новую переменную в замыкании, не затрагивая внешнюю
Библиотека задач по Python
👾 — nonlocal и global изменяют значение переменной только в момент объявления функции, а не при выполнении
👍 — nonlocal ищет переменную в ближайшей внешней области видимости, не включая глобальную, и изменяет её по ссылке
🥰 — global и nonlocal идентичны в поведении, но nonlocal можно использовать только внутри вложенных функций
⚡️ — Если переменная помечена как nonlocal, Python создаёт новую переменную в замыкании, не затрагивая внешнюю
Библиотека задач по Python
📺 Хватит коллекционировать туториалы!
Десятки роликов по ML, сотни вкладок, папка «Посмотреть позже» трещит по швам. В голове — обрывки знаний о нейросетях и Pandas.
Знания без системы — это просто «шум». Они не превращаются в навыки и проекты.
Наш курс «ML для старта в Data Science» — это не ещё один туториал. Это система. Чёткий путь от «каши» в голове до первого сильного проекта в портфолио.
И да, чтобы старт был ещё проще — при покупке курса по ML вы получаете курс по Python в подарок
👉 Превратите «шум» в навык (https://clc.to/jWS1pw)
А вы сталкивались с «информационной кашей»? Как выбирались? 👇
Десятки роликов по ML, сотни вкладок, папка «Посмотреть позже» трещит по швам. В голове — обрывки знаний о нейросетях и Pandas.
Знания без системы — это просто «шум». Они не превращаются в навыки и проекты.
Наш курс «ML для старта в Data Science» — это не ещё один туториал. Это система. Чёткий путь от «каши» в голове до первого сильного проекта в портфолио.
И да, чтобы старт был ещё проще — при покупке курса по ML вы получаете курс по Python в подарок
👉 Превратите «шум» в навык (https://clc.to/jWS1pw)
А вы сталкивались с «информационной кашей»? Как выбирались? 👇
Какой будет вывод следующего фрагмента кода?
s = {1, 2, 3, 3, 2, 4, 5, 5}
print(s)
👾 — {1, 2, 3, 3, 2, 4, 5, 5}
👍 — {1, 2, 3, 4, 5}
🥰 — None
⚡️ — {1, 5}
Библиотека задач по Python
s = {1, 2, 3, 3, 2, 4, 5, 5}
print(s)
👾 — {1, 2, 3, 3, 2, 4, 5, 5}
👍 — {1, 2, 3, 4, 5}
🥰 — None
⚡️ — {1, 5}
Библиотека задач по Python
👍2
🚀 Главная ошибка новичка в ML — строить звездолёт вместо велосипеда
Многие сразу хотят свою Midjourney, но в итоге получают только выгорание.
Успех начинается с «велосипеда»: научитесь предсказывать цены или классифицировать отзывы. Освойте базу, а уже потом стройте «звездолёты».
Наш курс «ML для старта в Data Science» — это и есть тот самый правильный старт от простого к сложному.
👉 Начните правильно (https://clc.to/AopCQQ)
Берёте курс «ML для старта» до конца недели — Python в подарок.
❗А 21 августа пройдет бесплатный вебинар (https://clc.to/QkFhow) с Марией Жаровой: узнаете, какие проекты качают скилл, а какие качают ваши нервы.
А какой самый сложный проект вы брались делать в самом начале? 🫢
Многие сразу хотят свою Midjourney, но в итоге получают только выгорание.
Успех начинается с «велосипеда»: научитесь предсказывать цены или классифицировать отзывы. Освойте базу, а уже потом стройте «звездолёты».
Наш курс «ML для старта в Data Science» — это и есть тот самый правильный старт от простого к сложному.
👉 Начните правильно (https://clc.to/AopCQQ)
Берёте курс «ML для старта» до конца недели — Python в подарок.
❗А 21 августа пройдет бесплатный вебинар (https://clc.to/QkFhow) с Марией Жаровой: узнаете, какие проекты качают скилл, а какие качают ваши нервы.
А какой самый сложный проект вы брались делать в самом начале? 🫢
✍🏻 Что такое фабрика декораторов?
Фабрика декораторов — это особая разновидность функции высшего порядка, которая возвращает декоратор вместо прямого результата. Главное отличие фабрики декораторов от обычного декоратора в том, что она принимает аргументы, которые могут конфигурировать логику декоратора.
Например, фабрика может принимать имя лог-файла, в который будет производиться запись при вызове декорируемой функции. Или уровень логирования вместо простой записи всех вызовов.
Такой подход позволяет создавать переиспользуемые и гибко настраиваемые декораторы для решения разных задач.
Главные преимущества фабрик декораторов — это возможность абстрагироваться от конкретики реализации, избежать дублирования кода и создавать интуитивный API для декораторов с настройками.
Библиотека задач по Python
Фабрика декораторов — это особая разновидность функции высшего порядка, которая возвращает декоратор вместо прямого результата. Главное отличие фабрики декораторов от обычного декоратора в том, что она принимает аргументы, которые могут конфигурировать логику декоратора.
Например, фабрика может принимать имя лог-файла, в который будет производиться запись при вызове декорируемой функции. Или уровень логирования вместо простой записи всех вызовов.
Такой подход позволяет создавать переиспользуемые и гибко настраиваемые декораторы для решения разных задач.
Главные преимущества фабрик декораторов — это возможность абстрагироваться от конкретики реализации, избежать дублирования кода и создавать интуитивный API для декораторов с настройками.
Библиотека задач по Python
👍1
🧠 Выбор первого ML-проекта: чеклист против выгорания
Классика плохих решений в ML — выбрать слишком сложный проект: неделя ковыряния в коде, десятки крашей и никакого результата. Хотите дойти до финиша — начните с простого проекта, который реально можно довести до конца.
Мини-чеклист первого проекта:
1. Понятные данные — без «я нашёл датасет в даркнете, но он на суахили».
2. Измеримая метрика — «точность 92%», а не «ну вроде работает».
3. Объяснимый результат — чтобы не-техлид понял, почему модель ругается на спам.
Наш курс «ML для старта в Data Science» — старт от простого к сложному: теория → практика → проверка → проект в портфолио.
👉 Начать свой путь в Data Science (https://clc.to/6hUFMw)
Оплатите курс по ML до 17 августа — курс по Python в подарок.
📅 Бесплатный вебинар (https://clc.to/6hUFMw) с Марией Жаровой — 21 августа: как выбирать проекты, которые доводят до оффера, а не до психотерапевта.
💾 Сохрани, чтобы не потерять, когда будешь готов(а) начать
Классика плохих решений в ML — выбрать слишком сложный проект: неделя ковыряния в коде, десятки крашей и никакого результата. Хотите дойти до финиша — начните с простого проекта, который реально можно довести до конца.
Мини-чеклист первого проекта:
1. Понятные данные — без «я нашёл датасет в даркнете, но он на суахили».
2. Измеримая метрика — «точность 92%», а не «ну вроде работает».
3. Объяснимый результат — чтобы не-техлид понял, почему модель ругается на спам.
Наш курс «ML для старта в Data Science» — старт от простого к сложному: теория → практика → проверка → проект в портфолио.
👉 Начать свой путь в Data Science (https://clc.to/6hUFMw)
Оплатите курс по ML до 17 августа — курс по Python в подарок.
📅 Бесплатный вебинар (https://clc.to/6hUFMw) с Марией Жаровой — 21 августа: как выбирать проекты, которые доводят до оффера, а не до психотерапевта.
💾 Сохрани, чтобы не потерять, когда будешь готов(а) начать
😎 Вы просили — мы сделали. Самый долгожданный анонс этого лета!
Мы открываем набор на второй поток курса «AI-агенты для DS-специалистов»!
На курсе мы учим главному навыку 2025 года: не просто «болтать» с LLM, а строить из них рабочие системы с помощью Ollama, RAG, LangChain и crew.ai (crew.ai).
📆 Старт потока — 15 сентября.
💸 Цена 49 000 ₽ действует только в эти выходные — до 17 августа. С понедельника будет дороже.
👉 Занять место (https://clc.to/N-xGWA)
Мы открываем набор на второй поток курса «AI-агенты для DS-специалистов»!
На курсе мы учим главному навыку 2025 года: не просто «болтать» с LLM, а строить из них рабочие системы с помощью Ollama, RAG, LangChain и crew.ai (crew.ai).
📆 Старт потока — 15 сентября.
💸 Цена 49 000 ₽ действует только в эти выходные — до 17 августа. С понедельника будет дороже.
👉 Занять место (https://clc.to/N-xGWA)
Почему Flask называют микрофреймворком?
Flask называют «микро», поскольку его основной набор функций относительно ограничен: маршрутизация, обработка запросов и модули разработки — вот и всё, что есть в нём. Многие возможности, такие как ORM, кэширование и аутентификация, были доступны в качестве дополнительных расширений, но конкурирующие фреймворки (например, Django) включали их по умолчанию. Архитектура «небольшое ядро + расширения» делает его «микро-» фреймворком, с которым гораздо проще начать работать и масштабировать.
(https://t.iss.one/py_interview_lib)Библиотека задач по Python
Flask называют «микро», поскольку его основной набор функций относительно ограничен: маршрутизация, обработка запросов и модули разработки — вот и всё, что есть в нём. Многие возможности, такие как ORM, кэширование и аутентификация, были доступны в качестве дополнительных расширений, но конкурирующие фреймворки (например, Django) включали их по умолчанию. Архитектура «небольшое ядро + расширения» делает его «микро-» фреймворком, с которым гораздо проще начать работать и масштабировать.
(https://t.iss.one/py_interview_lib)Библиотека задач по Python
Telegram
Библиотека собеса по Python | вопросы с собеседований
Вопросы с собеседований по Python и ответы на них.
По рекламе: @proglib_adv
Учиться у нас: https://proglib.io/w/6587aafa
Для обратной связи: @proglibrary_feeedback_bot
По рекламе: @proglib_adv
Учиться у нас: https://proglib.io/w/6587aafa
Для обратной связи: @proglibrary_feeedback_bot
🔥 Последняя неделя, чтобы забрать курс по AI-агентам по старой цене!
Пока вы тестируете Copilot, другие уже учатся строить AI-агентов, которые реально работают на бизнес. Хватит отставать!
Наш курс — это концентрат практики по LangChain и RAG. Улучшенная версия, доработанная по отзывам первого потока.
📆 Старт — 15 сентября.
💸 Цена 49 000 ₽ — только до 24 августа.
👉 Зафиксировать цену (https://clc.to/lSGDew)
Пока вы тестируете Copilot, другие уже учатся строить AI-агентов, которые реально работают на бизнес. Хватит отставать!
Наш курс — это концентрат практики по LangChain и RAG. Улучшенная версия, доработанная по отзывам первого потока.
📆 Старт — 15 сентября.
💸 Цена 49 000 ₽ — только до 24 августа.
👉 Зафиксировать цену (https://clc.to/lSGDew)