В Python что произойдёт при использовании изменяемого объекта (например, списка) как значения по умолчанию в аргументах функции?
👾 — Ошибка компиляции, так делать нельзя
👍 — Один и тот же объект будет использоваться для всех вызовов функции
🥰 — Каждый вызов функции будет создавать новый список автоматически
⚡️ — Значение по умолчанию всегда копируется при вызове функции
Библиотека задач по Python
👾 — Ошибка компиляции, так делать нельзя
👍 — Один и тот же объект будет использоваться для всех вызовов функции
🥰 — Каждый вызов функции будет создавать новый список автоматически
⚡️ — Значение по умолчанию всегда копируется при вызове функции
Библиотека задач по Python
👍28
Uvicorn/FastAPI-сервис использует asyncio и сторонние библиотеки, под капотом создающие потоки. Для CPU-bound задач вы подключили multiprocessing, но периодически ловите подвисания/краши при старте воркеров. Какой способ старта процессов корректнее выбрать?
👾 — fork — самый быстрый, поэтому всегда лучший выбор на Linux
👍 — spawn — запуск чистого интерпретатора, безопасен при наличии потоков/мьютексов у родителя
🥰 — forkserver — ничего не меняет относительно потоков, просто сложнее
⚡️ — Любой — способы эквивалентны на Linux
Библиотека задач по Python
👾 — fork — самый быстрый, поэтому всегда лучший выбор на Linux
👍 — spawn — запуск чистого интерпретатора, безопасен при наличии потоков/мьютексов у родителя
🥰 — forkserver — ничего не меняет относительно потоков, просто сложнее
⚡️ — Любой — способы эквивалентны на Linux
Библиотека задач по Python
👍4
🔥 Последняя неделя перед стартом курса по AI-агентам
Старт курса уже 15го числа! Если вы планировали вписаться — сейчас ПОСЛЕДНИЙ шанс забронировать место
На курсе:
— разложим LLM по косточкам: токенизация, SFT, PEFT, инференс
— соберём RAG и научимся оценивать его адекватно
— построим настоящую мультиагентную систему — архитектуру, которая умеет расти
— разберём CoPilot, сломаем через prompt injection (спасибо Максу)
— и наконец, посмотрим, как это работает в MCP и реальных кейсах
📍 Это 5 живых вебинаров + раздатка + домашки + чат с преподавателями
И главное — возможность реально разобраться, как проектировать системы на LLM, а не просто «поиграться с API»
Промокод на 5.000₽: LASTCALL
👉 Курс здесь
Старт курса уже 15го числа! Если вы планировали вписаться — сейчас ПОСЛЕДНИЙ шанс забронировать место
На курсе:
— разложим LLM по косточкам: токенизация, SFT, PEFT, инференс
— соберём RAG и научимся оценивать его адекватно
— построим настоящую мультиагентную систему — архитектуру, которая умеет расти
— разберём CoPilot, сломаем через prompt injection (спасибо Максу)
— и наконец, посмотрим, как это работает в MCP и реальных кейсах
📍 Это 5 живых вебинаров + раздатка + домашки + чат с преподавателями
И главное — возможность реально разобраться, как проектировать системы на LLM, а не просто «поиграться с API»
Промокод на 5.000₽: LASTCALL
👉 Курс здесь
В FastAPI вы кладёте correlation-id в contextvars.ContextVar в middleware. В логах он есть в хэндлерах, но иногда пропадает в коде, который выполняется через run_in_executor и в фоновых задачах asyncio.create_task(...). Что делать правильно?
👾 — Заменить ContextVar на глобальную переменную с мьютексом
👍 — Создавать фоновые задачи после установки ContextVar, а для run_in_executor запускать функцию через contextvars.copy_context().run(func, *args) для переноса контекста
🥰 — Перейти на threading.local(), он автоматически работает и в потоках, и в тасках
⚡️ — Включить uvloop — он сам перенесёт контекст в фоновые задачи и executor
Библиотека задач по Python
👾 — Заменить ContextVar на глобальную переменную с мьютексом
👍 — Создавать фоновые задачи после установки ContextVar, а для run_in_executor запускать функцию через contextvars.copy_context().run(func, *args) для переноса контекста
🥰 — Перейти на threading.local(), он автоматически работает и в потоках, и в тасках
⚡️ — Включить uvloop — он сам перенесёт контекст в фоновые задачи и executor
Библиотека задач по Python
👍8⚡1
Что выведет код?
👾 — [1, 1, 1, 1]
👍 — [0, 1, 1, 0]
🥰 — [1. 1. 1. 0]
⚡️ — Error
Библиотека задач по Python
👾 — [1, 1, 1, 1]
👍 — [0, 1, 1, 0]
🥰 — [1. 1. 1. 0]
⚡️ — Error
Библиотека задач по Python
🥰43👾12⚡2👍1
Сервис создаёт миллионы однотипных небольших объектов (несколько фиксированных полей). Память растёт, GC давит. Что изменить в моделях, чтобы существенно снизить footprint и ускорить доступ к атрибутам?
👾 — Отключить GC через gc.disable()
👍 — Хранить данные в dict вместо объектов
🥰 — Использовать slots или @dataclass(slots=True) для моделей
⚡️ — Увеличить sys.setrecursionlimit()
Библиотека задач по Python
👾 — Отключить GC через gc.disable()
👍 — Хранить данные в dict вместо объектов
🥰 — Использовать slots или @dataclass(slots=True) для моделей
⚡️ — Увеличить sys.setrecursionlimit()
Библиотека задач по Python
👍7🥰5❤1
Что выведет код?
👾 — 100 200 10 200
👍 — 10 200 10 200
🥰 — 100 100 10 20
⚡️ — 100 200 100 200
Библиотека задач по Python
👾 — 100 200 10 200
👍 — 10 200 10 200
🥰 — 100 100 10 20
⚡️ — 100 200 100 200
Библиотека задач по Python
🌚7👾4👍3⚡1
В асинхронном сервисе (Python ≥ 3.11) нужно запустить группу независимых корутин и при первой ошибке гарантированно отменить остальные с корректной агрегацией исключений. Что выбрать?
👾 — asyncio.gather(*cors, return_exceptions=True)
👍 — asyncio.TaskGroup()
🥰 — loop.run_until_complete() по одной корутине в цикле
⚡️ — создать asyncio.create_task на каждую и игнорировать исключения в фоне
Библиотека задач по Python
👾 — asyncio.gather(*cors, return_exceptions=True)
👍 — asyncio.TaskGroup()
🥰 — loop.run_until_complete() по одной корутине в цикле
⚡️ — создать asyncio.create_task на каждую и игнорировать исключения в фоне
Библиотека задач по Python
👍3
This media is not supported in your browser
VIEW IN TELEGRAM
📅 24 сентября в 19:00 МСК — бесплатный вебинар с Максимом Шаланкиным.
Тема: «ИИ-агенты: новая фаза развития искусственного интеллекта».
🔹 Почему все говорят про ИИ-агентов и куда вливаются миллиарды инвестиций.
🔹 Чем они отличаются от ChatGPT и обычных ботов.
🔹 Как работает цикл агента: восприятие → планирование → действие → обучение.
🔹 Живое демо простого агента.
🔹 Потенциал для бизнеса: автоматизация процессов и ROI до 80%.
Не придёшь — будешь потом рассказывать, что «агенты — это как чат-боты», и ловить косые взгляды от коллег 😏
👉 Регистрируйтесь через форму на лендинге
Тема: «ИИ-агенты: новая фаза развития искусственного интеллекта».
🔹 Почему все говорят про ИИ-агентов и куда вливаются миллиарды инвестиций.
🔹 Чем они отличаются от ChatGPT и обычных ботов.
🔹 Как работает цикл агента: восприятие → планирование → действие → обучение.
🔹 Живое демо простого агента.
🔹 Потенциал для бизнеса: автоматизация процессов и ROI до 80%.
Не придёшь — будешь потом рассказывать, что «агенты — это как чат-боты», и ловить косые взгляды от коллег 😏
👉 Регистрируйтесь через форму на лендинге
🥱2
⚡️ Бесплатный вебинар — ИИ-агенты: новая фаза развития AI
24 сентября в 19:00 МСК состоится бесплатный вебинар с Максимом Шаланкиным — Data Science Team Lead в финтех-команде MWS, а познакомиться с ним ближе можно в его тг-канале.
Тема:
На вебинаре разберёмся, почему агенты — это следующий шаг после ChatGPT, чем они отличаются от обычных моделей и как уже приносят бизнесу ROI до 80%. А дальше я покажу, как эта тема ложится в наш курс по ИИ-агентам, который разработан под руководством Никиты Зелинского.
Подробности рассказываем в гс выше — включай, чтобы не пропустить.
24 сентября в 19:00 МСК состоится бесплатный вебинар с Максимом Шаланкиным — Data Science Team Lead в финтех-команде MWS, а познакомиться с ним ближе можно в его тг-канале.
Тема:
«ИИ-агенты: новая фаза развития искусственного интеллекта».
На вебинаре разберёмся, почему агенты — это следующий шаг после ChatGPT, чем они отличаются от обычных моделей и как уже приносят бизнесу ROI до 80%. А дальше я покажу, как эта тема ложится в наш курс по ИИ-агентам, который разработан под руководством Никиты Зелинского.
Подробности рассказываем в гс выше — включай, чтобы не пропустить.
❤2
В каком типе данных сохраняются *args при передаче в функцию?
👾 — Список
👍 — Кортеж
🥰 — Словарь
⚡ — Ничего из вышеперечисленного
Библиотека задач по Python
👾 — Список
👍 — Кортеж
🥰 — Словарь
Библиотека задач по Python
Please open Telegram to view this post
VIEW IN TELEGRAM
👍24🥰1
Нужно запустить долгую корутину и дать вызывающему коду таймаут, но при истечении времени задача не должна отменяться, а продолжить выполняться в фоне. Что выбрать?
👾 — await asyncio.wait_for(op(), timeout=5)
👍 — t = asyncio.create_task(op()); await asyncio.wait_for(asyncio.shield(t), timeout=5)
🥰 — Запуск через ThreadPoolExecutor
⚡ — await asyncio.gather(op(), return_exceptions=True) с таймаутом
Библиотека задач по Python
👾 — await asyncio.wait_for(op(), timeout=5)
👍 — t = asyncio.create_task(op()); await asyncio.wait_for(asyncio.shield(t), timeout=5)
🥰 — Запуск через ThreadPoolExecutor
Библиотека задач по Python
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4
Нужно вызвать блокирующую функцию (нет async-аналога) из обработчика на asyncio, не блокируя event loop. Что выбрать?
👾 — Просто вызвать функцию напрямую в корутине
👍 — await asyncio.to_thread(func, *args, **kwargs)
🥰 — Обернуть функцию в async def и вызвать await func()
⚡ — Запустить функцию через time.sleep для «уступки» циклу
Библиотека задач по Python
👾 — Просто вызвать функцию напрямую в корутине
👍 — await asyncio.to_thread(func, *args, **kwargs)
🥰 — Обернуть функцию в async def и вызвать await func()
⚡ — Запустить функцию через time.sleep для «уступки» циклу
Библиотека задач по Python
👍12