Библиотека задач по Python | тесты, код, задания
6.68K subscribers
800 photos
13 videos
473 links
Задачи и тесты по Python для тренировки и обучения.

По рекламе: @proglib_adv

Учиться у нас: https://proglib.io/w/9f7384d6

Для обратной связи: @proglibrary_feeedback_bot
Download Telegram
😎 Сколько баллов набрали вы?

Голосуйте, какой у вас уровень разработчика:

😁 — 5-12 баллов (стажер)
👍 — 13-25 баллов (джуниор)
⚡️ — 26-40 баллов (джуниор+)
👏 — 41-60 баллов (миддл)
🔥 — 61-80 баллов (миддл+)
🎉 — 81-100 баллов (сеньор)
🤩 — 100+ баллов (тимлид)

Но вот в чем прикол — опытный разработчик набирает баллы не случайными косяками, а осознанными решениями.

👉 Научим, как быстро прокачаться от стажера до сеньора
😁4👍1🙏1
Ваш Python-сервис обрабатывает большое количество сетевых запросов. При профилировании видно, что он простаивает, ожидая I/O. Какой подход наиболее правильный для повышения производительности?

👾 — Увеличить количество потоков в ThreadPoolExecutor
👍 — Перейти на asyncio/uvloop и использовать асинхронные драйверы для работы с I/O
🥰 — Запускать каждый запрос в отдельном процессе через multiprocessing
⚡️ — Чаще вызывать gc.collect() для освобождения памяти

Библиотека задач по Python
👍14
🎮 КВЕСТОВАЯ ЛИНИЯ: «Путь Data Scientist'а»

⮕ Твой стартовый набор искателя данных:
Python — твое легендарное оружие (урон по багам +∞)
Математика — твой базовый интеллект (влияет на понимание алгоритмов)
Машинное обучение — твое дерево навыков (открывает новые способности)


⚡️ АКТИВЕН ВРЕМЕННЫЙ БАФФ: «Щедрость наставника»

Эффект: –30% к цене полного набора ДСника
Было: 121.800 ₽ → Стало: 84.900 ₽

☞ Что ждет тебя в этом квесте

— Получение артефактов: портфолио проектов и сертификаты— Прокачка от новичка до Senior Data Scientist— Босс-файты с реальными задачами из индустрии— Доступ к гильдии единомышленников


📎 Забрать бафф
Рассрочки: 3 мес | 6 мес | 12 мес
👍3
Что выведет код?

👾 — False
👍 — True
🥰 — Error

Библиотека задач по Python
👾36👍5
⚡️ Будь как этот гений с картинки — предлагай свои условия работодателю, а не наоборот!

Кто нужен?

Senior ML-Engineer с опытом работы более 6 месяцев в FAANG компаниях. Требование: разработать кросс-платформенное приложение-трекер зарплат с AI-распознаванием вакансий по резюме.


Но если вы пока джун — я бы предложил:

- Full-time контракт: 180к/мес после курса + опцион на карьеру в топ-компаниях

- Либо фикс за проект: стань ML-инженером за 39к вместо 44к с промокодом LASTCALL

🔗 Старт 9 сентября
👍2
В Python-сервисе нужно обрабатывать большое количество CPU-bound задач (например, шифрование или обработку изображений). Вы используете ThreadPoolExecutor, но прироста производительности почти нет. Какой подход будет правильным?

👾 — Увеличить количество потоков в пуле до числа ядер × 10
👍 — Использовать ProcessPoolExecutor или multiprocessing, чтобы обойти GIL
🥰 — Переписать задачи на asyncio, чтобы они выполнялись конкурентно
⚡️ — Вставить вызовы gc.collect() внутри цикла, чтобы ускорить потоки

Библиотека задач по Python
👍182
Иногда реально ощущение, что нас держат в Матрице.

Большинство сидит, читает статьи про ML, смотрит ролики «как это работает» — и всё.

Сегодня последний день промокода Lastcall (−5000 ₽).
Уже завтра стартует первый вебинар по Машинному обучению — полный набор для выхода из Матрицы.

Кто готов вырваться из симуляции и ворваться в сезон найма?

👾 — я уже в команде Нео
👍 — хочу красную таблетку
🤔 — пока думаю, но интересно

👉 Забронируй место сейчас
Как используется конструкция try — except? Какие ещё блоки для обработки исключений существуют?

try: Этот блок используется, чтобы обернуть код, который может вызвать исключение.

except: В этом блоке пишется код, который будет выполнен, если в блоке try возникнет исключение. Можно указать несколько блоков except.

else: Этот блок выполняется, если в блоке try не возникло исключений, то есть всё сработало без ошибок.

finally: Данный блок выполняется всегда после try, except и else, независимо от того, появилось исключение или нет (например, содержит инструкцию по закрытию файла).

Библиотека задач по Python
👍8
В Python при сравнении объектов с оператором is и == есть разница. Что наиболее корректно?

👾 — is сравнивает значения объектов, а == — их идентичность в памяти
👍 — is проверяет идентичность (один и тот же объект в памяти), == — равенство значений
🥰 — Оба оператора работают одинаково, разницы нет
⚡️ — is всегда быстрее и потому используется вместо ==

Библиотека задач по Python
👍51👾2👏1
В Python что произойдёт при использовании изменяемого объекта (например, списка) как значения по умолчанию в аргументах функции?

👾 — Ошибка компиляции, так делать нельзя
👍 — Один и тот же объект будет использоваться для всех вызовов функции
🥰 — Каждый вызов функции будет создавать новый список автоматически
⚡️ — Значение по умолчанию всегда копируется при вызове функции

Библиотека задач по Python
👍28
Uvicorn/FastAPI-сервис использует asyncio и сторонние библиотеки, под капотом создающие потоки. Для CPU-bound задач вы подключили multiprocessing, но периодически ловите подвисания/краши при старте воркеров. Какой способ старта процессов корректнее выбрать?

👾 — fork — самый быстрый, поэтому всегда лучший выбор на Linux
👍 — spawn — запуск чистого интерпретатора, безопасен при наличии потоков/мьютексов у родителя
🥰 — forkserver — ничего не меняет относительно потоков, просто сложнее
⚡️ — Любой — способы эквивалентны на Linux

Библиотека задач по Python
👍4
🔥 Последняя неделя перед стартом курса по AI-агентам

Старт курса уже 15го числа! Если вы планировали вписаться — сейчас ПОСЛЕДНИЙ шанс забронировать место

На курсе:
разложим LLM по косточкам: токенизация, SFT, PEFT, инференс
— соберём RAG и научимся оценивать его адекватно
— построим настоящую мультиагентную систему — архитектуру, которая умеет расти
— разберём CoPilot, сломаем через prompt injection (спасибо Максу)
— и наконец, посмотрим, как это работает в MCP и реальных кейсах

📍 Это 5 живых вебинаров + раздатка + домашки + чат с преподавателями

И главное — возможность реально разобраться, как проектировать системы на LLM, а не просто «поиграться с API»

Промокод на 5.000₽: LASTCALL

👉 Курс здесь
В FastAPI вы кладёте correlation-id в contextvars.ContextVar в middleware. В логах он есть в хэндлерах, но иногда пропадает в коде, который выполняется через run_in_executor и в фоновых задачах asyncio.create_task(...). Что делать правильно?

👾 — Заменить ContextVar на глобальную переменную с мьютексом
👍 — Создавать фоновые задачи после установки ContextVar, а для run_in_executor запускать функцию через contextvars.copy_context().run(func, *args) для переноса контекста
🥰 — Перейти на threading.local(), он автоматически работает и в потоках, и в тасках
⚡️ — Включить uvloop — он сам перенесёт контекст в фоновые задачи и executor

Библиотека задач по Python
👍81
Что выведет код?

👾 — [1, 1, 1, 1]
👍 — [0, 1, 1, 0]
🥰 — [1. 1. 1. 0]
⚡️ — Error

Библиотека задач по Python
🥰43👾122👍1
Сервис создаёт миллионы однотипных небольших объектов (несколько фиксированных полей). Память растёт, GC давит. Что изменить в моделях, чтобы существенно снизить footprint и ускорить доступ к атрибутам?

👾 — Отключить GC через gc.disable()
👍 — Хранить данные в dict вместо объектов
🥰 — Использовать slots или @dataclass(slots=True) для моделей
⚡️ — Увеличить sys.setrecursionlimit()

Библиотека задач по Python
👍7🥰51
Что выведет код сверху?

👾 — 9
👍 — 6
🥰 — 4
🤔 — Error

Библиотека задач по Python
👍21🥰13
Что выведет код?

👾 — 100 200 10 200
👍 — 10 200 10 200
🥰 — 100 100 10 20
⚡️ — 100 200 100 200

Библиотека задач по Python
🌚7👾4👍31
В асинхронном сервисе (Python ≥ 3.11) нужно запустить группу независимых корутин и при первой ошибке гарантированно отменить остальные с корректной агрегацией исключений. Что выбрать?

👾 — asyncio.gather(*cors, return_exceptions=True)
👍 — asyncio.TaskGroup()
🥰 — loop.run_until_complete() по одной корутине в цикле
⚡️ — создать asyncio.create_task на каждую и игнорировать исключения в фоне

Библиотека задач по Python
👍3
This media is not supported in your browser
VIEW IN TELEGRAM
📅 24 сентября в 19:00 МСК — бесплатный вебинар с Максимом Шаланкиным.

Тема: «ИИ-агенты: новая фаза развития искусственного интеллекта».

🔹 Почему все говорят про ИИ-агентов и куда вливаются миллиарды инвестиций.
🔹 Чем они отличаются от ChatGPT и обычных ботов.
🔹 Как работает цикл агента: восприятие → планирование → действие → обучение.
🔹 Живое демо простого агента.
🔹 Потенциал для бизнеса: автоматизация процессов и ROI до 80%.

Не придёшь — будешь потом рассказывать, что «агенты — это как чат-боты», и ловить косые взгляды от коллег 😏

👉 Регистрируйтесь через форму на лендинге
🥱2