Библиотека задач по Python | тесты, код, задания
6.72K subscribers
788 photos
12 videos
442 links
Задачи и тесты по Python для тренировки и обучения.

По рекламе: @proglib_adv

Учиться у нас: https://proglib.io/w/9f7384d6

Для обратной связи: @proglibrary_feeedback_bot
Download Telegram
У вас есть высоконагруженное Django-приложение. Пользователи жалуются на медленные отклики при работе с ORM-запросами. Какой из подходов будет наиболее правильным для оптимизации?

👾 — Использовать select_related и prefetch_related для оптимизации запросов и уменьшения количества обращений к базе
👍 — Заменить все ORM-запросы на чистый SQL, так как он всегда быстрее
🥰 — Увеличить таймаут подключения к базе данных
⚡️ — Отключить транзакции, чтобы ускорить коммиты

Библиотека задач по Python
Please open Telegram to view this post
VIEW IN TELEGRAM
👾13👍1
📢 Какой сетап идеально подойдёт для разработки AI-агента?

Голосуйте за свой вариант и пишите в комментариях, в каком режиме вы реально кодите.

❤️ — 1
👍 — 2
⚡️ — 3
👏 — 4
🔥 — 5
🎉 — 6
😁 — 7
😍 — 8
🤩 — 9

Какой бы сетап ни был, без AI-агентов в 2025 всё равно далеко не уедешь.

👉 Научим, как строить агентов, которые кодят с тобой
😍4😁21🎉1
Вы случайно закоммитили секретные данные (пароль/ключ API) в публичный репозиторий. Какой из подходов наиболее правильный для удаления этой информации из истории?

👾 — Выполнить git reset --hard и закоммитить снова
👍 — Удалить файл локально и сделать новый коммит с исправлением
🥰 — Использовать git filter-repo (или git filter-branch) для переписывания истории и удалить секреты из всех прошлых коммитов
⚡️ — Просто добавить секрет в .gitignore, чтобы он больше не попадал в коммиты

Библиотека задач по Python
Please open Telegram to view this post
VIEW IN TELEGRAM
🥰9👾52👍1
Помните игру Portal? Вам давали один инструмент — портальную пушку — и с её помощью вы решали десятки головоломок, переворачивая пространство с ног на голову.

🐍 Python — это ваша портальная пушка. Один инструмент, который позволяет вам «сокращать» путь: автоматизировать рутину, парсить сайты, создавать ботов и решать реальные задачи.

Наш обновлённый курс по Python — это серия идеально выстроенных тестовых камер. Без сухой теории, но с практическими головоломками. Мы, как GLaDOS (только добрее 😉), проведём вас через 30 уроков, от основ до создания финального проекта — вашего собственного Telegram-бота.

И торт — это не ложь. Ваша награда — реальный проект в портфолио и специальная цена 24 990 рублей, которая действует всего 4 дня, до 1 сентября.

👉 Начать тестирование
👍3🤔1
В Django-приложении при росте нагрузки база данных начинает работать медленно из-за большого числа однотипных SQL-запросов. Какой подход наиболее правильный для оптимизации?

👾 — Использовать select_related / prefetch_related для снижения количества запросов
👍 — Переписать все запросы ORM на raw() SQL
🥰 — Увеличить таймаут подключения к базе
⚡️ — Добавить больше воркеров Gunicorn/Uvicorn, чтобы база обрабатывала запросы быстрее

Библиотека задач по Python
Please open Telegram to view this post
VIEW IN TELEGRAM
👾12👍2
Осталось 48 часов!

Обратный отсчёт пошёл: только до воскресенья 23:59 можно купить курс «AI-агенты для DS-специалистов» и начать учиться уже с 15 сентября.

⚡️ Это ваши +3 недели форы, чтобы спокойно разобраться в самых сложных темах и прийти к первому занятию 7 октября уже подготовленным.

👉 Забрать место
🤓 «Сначала выучу Python идеально, а потом пойду в ML»

Звучит логично, но на практике — ловушка.
Python огромный: фреймворки, библиотеки, нюансы синтаксиса. Учить «всё сразу» можно бесконечно.

В итоге — месяцы зубрёжки, а до ML руки так и не доходят.

На старте достаточно баз: типы данных, циклы, функции, работа с библиотеками. Всё остальное лучше подтягивать в процессе решения ML-задач.

⚠️ До 1 сентября курсы можно забрать по старым ценам. Это последние выходные, когда:
ML идёт за 34 000 вместо 44 000 ₽ + Python в подарок,
два в одном: оплатите курс по математике и получите второй доступ в подарок,
— и главное: можно купить все курсы до подорожания.

👉 ML для старта в Data Science

А для будущих Data Scientist’ов у нас ещё:
Базовые модели ML и приложения
Математика для Data Science
AI-агенты для DS-специалистов (2-й поток скоро)
👍1
Можно ли объявить несколько присваиваний в одном выражении?

На изображении представлены оба варианта. В первой строке переменные a, b и c получают значения 3, 4 и 5 соответственно, а во второй строке все переменные устанавливаются в значение 3.

Библиотека задач по Python
👍4