🤯 Мы больше года строим мультиагентные системы
Грабли, находки, паттерны, эксперименты — всё это накопилось и в какой-то момент стало жалко держать только у себя.
Никита — рассказывает (и показывает) базу: токенизация, LLM, SFT, PEFT, локальный инференс + RAG и как оценивать его качество.
Диана — как строят мультиагентные системы, какие есть паттерны проектирования и библиотеки.
Макс — про инференс в проде + разберет CoPilot, соберет с вами из кусочков свой копайлот, а затем его сломает через prompt injection. // Макс фанат autogen (а если нет — он вас разубедит в своем классном канале)
Финальным аккордом Дима углубится в MCP и соберет несколько кейсов повзрослее.
Курс тут: https://clc.to/47pgYA
Промокод:datarascals действует до 23:59 29 июня
Грабли, находки, паттерны, эксперименты — всё это накопилось и в какой-то момент стало жалко держать только у себя.
Никита — рассказывает (и показывает) базу: токенизация, LLM, SFT, PEFT, локальный инференс + RAG и как оценивать его качество.
Диана — как строят мультиагентные системы, какие есть паттерны проектирования и библиотеки.
Макс — про инференс в проде + разберет CoPilot, соберет с вами из кусочков свой копайлот, а затем его сломает через prompt injection. // Макс фанат autogen (а если нет — он вас разубедит в своем классном канале)
Финальным аккордом Дима углубится в MCP и соберет несколько кейсов повзрослее.
Курс тут: https://clc.to/47pgYA
Промокод:
👍3
Какой метод необходимо реализовать в пользовательском промежуточном программном обеспечении?
👾 — process_request()
👍 — call()
🥰 — process_response()
⚡️ — get_context_data()
Библиотека собеса по Python
👾 — process_request()
👍 — call()
🥰 — process_response()
⚡️ — get_context_data()
Библиотека собеса по Python
⚡4
Какая польза от структуры сеанса в Django?
Используя фреймворк сеанса, вы можете легко хранить и извлекать произвольные данные на основе предварительных посетителей сайта. Он хранит данные на стороне сервера и заботится о процессе отправки и получения файлов cookie. Эти файлы cookie состоят только из идентификатора сеанса, а не из самих данных, если вы явно не используете бэкэнд на основе файлов cookie.
Библиотека собеса по Python
Библиотека собеса по Python
👍5
Как использовать сеансы на основе файлов?
Чтобы использовать то же самое, вам нужно установить настройки SESSION_ENGINE на "django.contrib.sessions.backends.file".
Библиотека собеса по Python
Библиотека собеса по Python
👍4❤1
Каковы различные стили наследования моделей в Django?
Наследование абстрактного базового класса: используется, когда вам нужен только родительский класс для хранения информации, которую вы не хотите писать для каждой дочерней модели.
Наследование многотабличной модели: используется, когда вы создаете подкласс существующей модели и вам нужно, чтобы каждая модель имела свою собственную таблицу в базе данных.
Наследование прокси-модели: используется, когда вы хотите сохранить поле модели, изменяя при этом функционирование модели на уровне Python.
Библиотека собеса по Python
Наследование многотабличной модели: используется, когда вы создаете подкласс существующей модели и вам нужно, чтобы каждая модель имела свою собственную таблицу в базе данных.
Наследование прокси-модели: используется, когда вы хотите сохранить поле модели, изменяя при этом функционирование модели на уровне Python.
Библиотека собеса по Python
👍3
Какие базы данных поддерживает Django?
PostgreSQL и MySQL, SQLite и Oracle. Помимо этого, Django также поддерживает такие базы данных, как ODBC, Microsoft SQL Server, IBM DB2, SAP SQL Anywhere и Firebird с использованием сторонних пакетов. Примечание: официально Django не поддерживает базы данных no-SQL.
Библиотека собеса по Python
Библиотека собеса по Python
❤2🥰2
🔥 Последняя неделя перед стартом курса по AI-агентам
Старт курса уже 5го числа! Если вы планировали вписаться — сейчас ПОСЛЕДНИЙ шанс забронировать место
На курсе:
— разложим LLM по косточкам: токенизация, SFT, PEFT, инференс
— соберём RAG и научимся оценивать его адекватно
— построим настоящую мультиагентную систему — архитектуру, которая умеет расти
— разберём CoPilot, сломаем через prompt injection (спасибо Максу)
— и наконец, посмотрим, как это работает в MCP и реальных кейсах
📍 Это 5 живых вебинаров + раздатка + домашки + чат с преподавателями
И главное — возможность реально разобраться, как проектировать системы на LLM, а не просто «поиграться с API»
👉 Курс здесь
Старт курса уже 5го числа! Если вы планировали вписаться — сейчас ПОСЛЕДНИЙ шанс забронировать место
На курсе:
— разложим LLM по косточкам: токенизация, SFT, PEFT, инференс
— соберём RAG и научимся оценивать его адекватно
— построим настоящую мультиагентную систему — архитектуру, которая умеет расти
— разберём CoPilot, сломаем через prompt injection (спасибо Максу)
— и наконец, посмотрим, как это работает в MCP и реальных кейсах
📍 Это 5 живых вебинаров + раздатка + домашки + чат с преподавателями
И главное — возможность реально разобраться, как проектировать системы на LLM, а не просто «поиграться с API»
👉 Курс здесь
❤1👍1
Разница между Django OneToOneField и ForeignKey Field?
Оба они являются наиболее распространенными типами полей, используемых в Django. Единственное различие между ними заключается в том, что поле ForeignKey состоит из параметра on_delete вместе с классом модели, поскольку оно используется для отношений «многие к одному», тогда как, с другой стороны, OneToOneField реализует только отношение «один к одному» и требует только класс модели.
Библиотека собеса по Python
Библиотека собеса по Python
👍2
👍3😁1
🧠 «Поиграйся с LLM, почитай про агентов — и сам поймёшь, как это работает»
Это один из самых бесполезных советов, который мы слышали в адрес тех, кто хочет разобраться в AI-агентах.
Поиграйся — это как?
Потыкать пару промптов в ChatGPT и решить, что теперь ты можешь строить мультиагентные системы? 🤡 Ну-ну.
AI-агенты — это не «очередная обёртка над GPT». Это архитектура. Состояния, инструменты, цепочки вызовов, память, оценка качества и адекватность поведения.
➡️ Чтобы разобраться, нужно:
— понимать, как устроен LLM под капотом
— уметь подключать внешние данные (RAG, retrievers, rerankers)
— уметь масштабировать и дебажить поведение агентов
— разбираться в фреймворках вроде AutoGen, CrewAI, LangChain
— знать, как всё это тащится в прод
Если вы реально хотите не «поиграться», а научиться собирать рабочие агентные системы — у нас стартует курс по разработке ИИ-агентов 5го июля
P.S: не упусти свой шанс, промокод:LASTCALL на 10.000₽
Это один из самых бесполезных советов, который мы слышали в адрес тех, кто хочет разобраться в AI-агентах.
Поиграйся — это как?
Потыкать пару промптов в ChatGPT и решить, что теперь ты можешь строить мультиагентные системы? 🤡 Ну-ну.
AI-агенты — это не «очередная обёртка над GPT». Это архитектура. Состояния, инструменты, цепочки вызовов, память, оценка качества и адекватность поведения.
➡️ Чтобы разобраться, нужно:
— понимать, как устроен LLM под капотом
— уметь подключать внешние данные (RAG, retrievers, rerankers)
— уметь масштабировать и дебажить поведение агентов
— разбираться в фреймворках вроде AutoGen, CrewAI, LangChain
— знать, как всё это тащится в прод
Если вы реально хотите не «поиграться», а научиться собирать рабочие агентные системы — у нас стартует курс по разработке ИИ-агентов 5го июля
P.S: не упусти свой шанс, промокод:
👍2
😤 Пока вы думаете — остальные уже учатся строить системы, которые работают за них
⚡24 часа до старта курса по AI-агентам. Самое время задуматься о прокачке скиллов, потому что места ограничены!
Если вы до сих пор думаете, что LLM — это просто «вызов через API», то вы рискуете очень скоро оказаться за бортом индустрии.
Модели больше не в центре. Решают те, кто умеет собирать интеллектуальные системы, а не просто «дообучать модельку».
➡️ Что вы потеряете, если не впишетесь:
— навык, который уже востребован на рынке
— понимание, как из GPT сделать полноценного помощника, агента или продукт
— шанс догнать тех, кто уже перешёл на следующий уровень
📌 Курс стартует уже завтра
— 5 вебинаров, живая практика, код, разборы, продовые кейсы
— без «посмотрите статью», только то, что реально нужно
Спикеры: Никита Зелинский (МТС), Диана Павликова, Макс Пташник, Дима Фомин — те, кто реально собирает агентные системы, а не просто про них пишет.
❗Старт уже завтра — забронируйте место на курсе сейчас
⚡24 часа до старта курса по AI-агентам. Самое время задуматься о прокачке скиллов, потому что места ограничены!
Если вы до сих пор думаете, что LLM — это просто «вызов через API», то вы рискуете очень скоро оказаться за бортом индустрии.
Модели больше не в центре. Решают те, кто умеет собирать интеллектуальные системы, а не просто «дообучать модельку».
➡️ Что вы потеряете, если не впишетесь:
— навык, который уже востребован на рынке
— понимание, как из GPT сделать полноценного помощника, агента или продукт
— шанс догнать тех, кто уже перешёл на следующий уровень
📌 Курс стартует уже завтра
— 5 вебинаров, живая практика, код, разборы, продовые кейсы
— без «посмотрите статью», только то, что реально нужно
Спикеры: Никита Зелинский (МТС), Диана Павликова, Макс Пташник, Дима Фомин — те, кто реально собирает агентные системы, а не просто про них пишет.
❗Старт уже завтра — забронируйте место на курсе сейчас
👍2
Что такое контекст в Django?
Context — это имя переменной шаблона сопоставления словаря, данное объектам Python в Django. Это общее имя, но вы можете дать любое другое имя по вашему выбору, если хотите.
Библиотека собеса по Python
Библиотека собеса по Python
❤4🤔2
🔥 Сегодня стартует курс по AI-агентам!
Онбординг уже сегодня, но ещё можно вписаться — ПОСЛЕДНИЙ ШАНС это сделать.
Мы больше года собирали мультиагентные системы: экспериментировали, переделывали и в итоге — оформили всё в 5 плотных вебинаров.
😤 «А можно ли вообще научиться чему-то за 5 вебинаров?!»
Если вы хотите просто послушать — нет
Если хотите разбираться и делать — да
➡️ На курсе:
— мы не читаем слайдики, а работаем в коде в реальном времени
— можно задавать вопросы прямо на вебинаре
— после каждого вебинара есть домашка и поддержка в чате
И главное — вы получаете системное понимание, а не набор хаотичных туториалов.
⚡️Если вы думаете, что успеете потом — не успеете.
Старт сегодня:
— а те, кто вписался сейчас, будут вас опережать — в проектах, на грейде и в зарплате
Знакомьтесь, эксперт нашего курса:
Никита Зелинский — Chief Data Scientist МТС, Head of ML Platforms, руководитель центра компетенций по Data Science.
❗Стартуем сегодня — забронируй свое место
Онбординг уже сегодня, но ещё можно вписаться — ПОСЛЕДНИЙ ШАНС это сделать.
Мы больше года собирали мультиагентные системы: экспериментировали, переделывали и в итоге — оформили всё в 5 плотных вебинаров.
😤 «А можно ли вообще научиться чему-то за 5 вебинаров?!»
Если вы хотите просто послушать — нет
Если хотите разбираться и делать — да
➡️ На курсе:
— мы не читаем слайдики, а работаем в коде в реальном времени
— можно задавать вопросы прямо на вебинаре
— после каждого вебинара есть домашка и поддержка в чате
И главное — вы получаете системное понимание, а не набор хаотичных туториалов.
⚡️Если вы думаете, что успеете потом — не успеете.
Старт сегодня:
— а те, кто вписался сейчас, будут вас опережать — в проектах, на грейде и в зарплате
Знакомьтесь, эксперт нашего курса:
Никита Зелинский — Chief Data Scientist МТС, Head of ML Platforms, руководитель центра компетенций по Data Science.
❗Стартуем сегодня — забронируй свое место
👍2
Каковы способы настройки функциональности интерфейса администратора Django?
Существует несколько способов настройки функциональности интерфейса администратора Django. Вы можете использовать форму добавления/изменения, которая автоматически генерируется Django, вы можете добавлять модули JavaScript с помощью параметра js. Этот параметр в основном представляет собой список URL-адресов, указывающих на модули JavaScript, которые должны быть включены в ваш проект в теге <script>. Вы также можете написать представления для администратора, если хотите.
Библиотека собеса по Python
Библиотека собеса по Python
👍4
Функция compress
Функция compress из itertools используется для фильтрации элементов входной последовательности на основе соответствующих элементов булевой последовательности.
Библиотека собеса по Python
Библиотека собеса по Python
👍2😁2
Как получить определенный предмет в Model?
Если нет результатов, соответствующих запросу, get() вызовет исключение DoesNotExist. Если данному запросу get() соответствует более одного элемента он вызовет MultipleObjectsReturned, который также является атрибутом самого класса модели.
Библиотека собеса по Python
Библиотека собеса по Python
🔥2🥱1
В чем разница между локальными и глобальными переменными в SQL?
Локальные переменные могут быть доступны только внутри функции, в которой они были объявлены. А глобальные переменные, будучи объявленными вне какой-либо функции, хранятся в фиксированных структурах памяти и могут использоваться во всей программе.
Библиотека собеса по Python
Библиотека собеса по Python
👍5
❗ Первый вебинар нашего курса по AI-агентам уже прошёл!
Запись уже выложили на обучающей платформе — можно влетать и догонять с комфортом.
Первые слушатели уже оставили фидбэки — и, кажется, мы попали в точку:
— «теперь наконец понял, как выбирать модели под задачу — раньше брал первую попавшуюся»
— «без лишнего, по делу, в лайве — кайф»
— «огонь, ожидания 100% оправданы лично у меня»
Если хотели вписаться, но сомневались — ещё не поздно. Вебинары идут вживую, записи сохраняются, чат работает, материалы открыты.
⏳ Ещё можно догнать и пройти всё вместе с потоком.
👉 Залетай на курс
Запись уже выложили на обучающей платформе — можно влетать и догонять с комфортом.
Первые слушатели уже оставили фидбэки — и, кажется, мы попали в точку:
— «теперь наконец понял, как выбирать модели под задачу — раньше брал первую попавшуюся»
— «без лишнего, по делу, в лайве — кайф»
— «огонь, ожидания 100% оправданы лично у меня»
Если хотели вписаться, но сомневались — ещё не поздно. Вебинары идут вживую, записи сохраняются, чат работает, материалы открыты.
⏳ Ещё можно догнать и пройти всё вместе с потоком.
👉 Залетай на курс
❤3
В чем отличие
и — это разные способы применения декораторов.
применяет декоратор без аргументов, а применяет декоратор с аргументами.
То есть вызывает декоратор foobar, передавая ему аргументы, а затем результат (декорированная функция) применяется к функции.
Библиотека собеса по Python
@foobar
от @foobar()
?@foobar
@foobar()
@foobar
@foobar()
То есть
@foobar()
Библиотека собеса по Python
👍2
Что такое функция django.shortcuts.render?
Когда функция представления возвращает веб-страницу как HttpResponse вместо простой строки, мы используем render(). Функция Render — это сокращённая функция, которая позволяет разработчику легко передавать словарь данных вместе с шаблоном. Эта функция затем объединяет шаблон со словарём данных с помощью шаблонизатора. Наконец, render() возвращает HttpResponse с отрисованным текстом, который представляет собой данные, возвращаемые моделями. Таким образом, функция Django render() обходит большую часть работы разработчика и позволяет ему использовать различные шаблонизаторы.
Базовый синтаксис:
render(request, template_name, context=None, content_type=None, status=None, using=None)
Запрос — это параметр, который генерирует ответ. Имя шаблона — это используемый HTML-шаблон, а контекст — это словарь данных, переданных на страницу из Python. Вы также можете указать тип контента, статус переданных данных и возвращаемый рендер.
Библиотека собеса по Python
Базовый синтаксис:
render(request, template_name, context=None, content_type=None, status=None, using=None)
Запрос — это параметр, который генерирует ответ. Имя шаблона — это используемый HTML-шаблон, а контекст — это словарь данных, переданных на страницу из Python. Вы также можете указать тип контента, статус переданных данных и возвращаемый рендер.
Библиотека собеса по Python
👍2