В продакшн случайно был задеплоен коммит с багом. Фикс уже готов, но нужно быстро откатить изменения, чтобы восстановить рабочее состояние. Какие у вас есть варианты действий и когда использовать каждый?
Можно использовать git revert, если нужно сохранить историю и явно зафиксировать отмену коммита (подходит для общих веток). Если баговый коммит ещё не попал в общий репозиторий, можно применить git reset --hard и перезаписать историю. Для сложных случаев — git cherry-pick нужных исправлений в стабильную ветку.
Библиотека собеса по Python
Библиотека собеса по Python
👍2🤔1
Помните игру Portal? Вам давали один инструмент — портальную пушку — и с её помощью вы решали десятки головоломок, переворачивая пространство с ног на голову.
🐍 Python — это ваша портальная пушка. Один инструмент, который позволяет вам «сокращать» путь: автоматизировать рутину, парсить сайты, создавать ботов и решать реальные задачи.
Наш обновлённый курс по Python — это серия идеально выстроенных тестовых камер. Без сухой теории, но с практическими головоломками. Мы, как GLaDOS (только добрее 😉), проведём вас через 30 уроков, от основ до создания финального проекта — вашего собственного Telegram-бота.
И торт — это не ложь. Ваша награда — реальный проект в портфолио и специальная цена 24 990 рублей, которая действует всего 4 дня, до 1 сентября.
👉 Начать тестирование
🐍 Python — это ваша портальная пушка. Один инструмент, который позволяет вам «сокращать» путь: автоматизировать рутину, парсить сайты, создавать ботов и решать реальные задачи.
Наш обновлённый курс по Python — это серия идеально выстроенных тестовых камер. Без сухой теории, но с практическими головоломками. Мы, как GLaDOS (только добрее 😉), проведём вас через 30 уроков, от основ до создания финального проекта — вашего собственного Telegram-бота.
И торт — это не ложь. Ваша награда — реальный проект в портфолио и специальная цена 24 990 рублей, которая действует всего 4 дня, до 1 сентября.
👉 Начать тестирование
❤1👍1
В продакшн-Django приложении пользователи жалуются на долгие ответы при большом количестве одновременных запросов. Как вы будете диагностировать и устранять проблему?
Проверю профилировщиком SQL-запросы (Django Debug Toolbar, New Relic, Sentry APM), чтобы найти N+1 или долгие join. Оптимизирую ORM через select_related / prefetch_related, добавлю кеширование (Redis, Memcached), connection pooling, а также настрою правильный backend для деплоя (Gunicorn/Uvicorn с несколькими воркерами).
Библиотека собеса по Python
Библиотека собеса по Python
👍2🔥1
⏰ Осталось 48 часов!
Обратный отсчёт пошёл: только до воскресенья 23:59 можно купить курс «AI-агенты для DS-специалистов» и начать учиться уже с 15 сентября.
⚡️ Это ваши +3 недели форы, чтобы спокойно разобраться в самых сложных темах и прийти к первому занятию 7 октября уже подготовленным.
👉 Забрать место
Обратный отсчёт пошёл: только до воскресенья 23:59 можно купить курс «AI-агенты для DS-специалистов» и начать учиться уже с 15 сентября.
⚡️ Это ваши +3 недели форы, чтобы спокойно разобраться в самых сложных темах и прийти к первому занятию 7 октября уже подготовленным.
👉 Забрать место
🥱1
🤓 «Сначала выучу Python идеально, а потом пойду в ML»
Звучит логично, но на практике — ловушка.
Python огромный: фреймворки, библиотеки, нюансы синтаксиса. Учить «всё сразу» можно бесконечно.
В итоге — месяцы зубрёжки, а до ML руки так и не доходят.
На старте достаточно баз: типы данных, циклы, функции, работа с библиотеками. Всё остальное лучше подтягивать в процессе решения ML-задач.
⚠️ До 1 сентября курсы можно забрать по старым ценам. Это последние выходные, когда:
— ML идёт за 34 000 вместо 44 000 ₽ + Python в подарок,
— два в одном: оплатите курс по математике и получите второй доступ в подарок,
— и главное: можно купить все курсы до подорожания.
👉 ML для старта в Data Science
А для будущих Data Scientist’ов у нас ещё:
— Базовые модели ML и приложения
— Математика для Data Science
— AI-агенты для DS-специалистов (2-й поток скоро)
Звучит логично, но на практике — ловушка.
Python огромный: фреймворки, библиотеки, нюансы синтаксиса. Учить «всё сразу» можно бесконечно.
В итоге — месяцы зубрёжки, а до ML руки так и не доходят.
На старте достаточно баз: типы данных, циклы, функции, работа с библиотеками. Всё остальное лучше подтягивать в процессе решения ML-задач.
⚠️ До 1 сентября курсы можно забрать по старым ценам. Это последние выходные, когда:
— ML идёт за 34 000 вместо 44 000 ₽ + Python в подарок,
— два в одном: оплатите курс по математике и получите второй доступ в подарок,
— и главное: можно купить все курсы до подорожания.
👉 ML для старта в Data Science
А для будущих Data Scientist’ов у нас ещё:
— Базовые модели ML и приложения
— Математика для Data Science
— AI-агенты для DS-специалистов (2-й поток скоро)
👍1
🤖 Что делать, если нужно сериализовать данные, которые не поддерживаются стандартным модулем json?
Если нужно сериализовать объекты, которые по умолчанию не поддерживаются модулем json, то есть несколько вариантов:
— Реализовать методы getattr и setattr в классе объекта, чтобы преобразовать его в словарь, который уже можно сериализовать в JSON.
— Использовать декоратор dataclass из модуля dataclasses для автоматической генерации методов сериализации.
— Создать собственный класс-наследник json.JSONEncoder и переопределить метод default(), чтобы указать как сериализовать нестандартные объекты.
— Использовать библиотеку marshmallow для создания схем сериализации/десериализации сложных объектов в JSON.
— Преобразовать объекты в dict или list вручную перед сериализацией с помощью методов объекта или отражения (reflection).
— Использовать другой формат сериализации, например YAML или MessagePack, который может поддерживать произвольные типы.
Библиотека собеса по Python
— Реализовать методы getattr и setattr в классе объекта, чтобы преобразовать его в словарь, который уже можно сериализовать в JSON.
— Использовать декоратор dataclass из модуля dataclasses для автоматической генерации методов сериализации.
— Создать собственный класс-наследник json.JSONEncoder и переопределить метод default(), чтобы указать как сериализовать нестандартные объекты.
— Использовать библиотеку marshmallow для создания схем сериализации/десериализации сложных объектов в JSON.
— Преобразовать объекты в dict или list вручную перед сериализацией с помощью методов объекта или отражения (reflection).
— Использовать другой формат сериализации, например YAML или MessagePack, который может поддерживать произвольные типы.
Библиотека собеса по Python
👍3
В высоконагруженном Python-сервисе время отклика начинает расти при увеличении числа потоков, хотя CPU используется не полностью. В чём может быть причина и как это исправить?
Причина в GIL: в Python одновременно выполняется только один поток байткода, поэтому многопоточность не даёт прироста для CPU-bound задач. Решение — использовать multiprocessing/ProcessPoolExecutor или вынести вычисления в C-расширения/NumPy.
Библиотека собеса по Python
Библиотека собеса по Python
👍4❤1
ПОСЛЕДНИЙ ДЕНЬ❗
КУРСЫ ПОДОРОЖАЮТ ЗАВТРА‼️
— ML за 34к вместо 44к + Python в подарок
— Математика → второй доступ в подарок
— Ранний доступ к AI-агентам с 15 сентября
— И МОЖНО УСПЕТЬ КУПИТЬ ВСЁ ДО ПОДОРОЖАНИЯ
👉 Proglib Academy
КУРСЫ ПОДОРОЖАЮТ ЗАВТРА‼️
— ML за 34к вместо 44к + Python в подарок
— Математика → второй доступ в подарок
— Ранний доступ к AI-агентам с 15 сентября
— И МОЖНО УСПЕТЬ КУПИТЬ ВСЁ ДО ПОДОРОЖАНИЯ
👉 Proglib Academy
🤔2
В Python-сервисе под нагрузкой заметно растёт время отклика. Профилирование показывает, что большая часть времени тратится на сериализацию и десериализацию JSON. Как вы будете искать и устранять проблему?
Сначала проверю профилером “горячие места” сериализации (cProfile, line_profiler). Для оптимизации можно заменить стандартный модуль json на более быстрые реализации (ujson, orjson), использовать pydantic/датаклассы с валидацией только там, где это нужно, или кэшировать результаты сериализации для часто используемых структур.
Библиотека собеса по Python
Библиотека собеса по Python
👍3
Что такое Django Rest Framework (DRF)?
Django Rest Framework — это фреймворк с открытым исходным кодом, основанный на Django, который позволяет быстро создавать RESTful API.
Кстати, у нас есть курс по машинному обучению для старта в Data Science: https://proglib.academy/machine-learning
Библиотека собеса по Python
Кстати, у нас есть курс по машинному обучению для старта в Data Science:
Библиотека собеса по Python
👍1
Переворачиваем календарь — а там скидки, которые уже закончились.
Но мы их вернули на последний день 🤔
До 00:00 третьего сентября (цены как до 1 сентября):
▪️ Математика для Data Science — 35.199 ₽ вместо 44.900 ₽
▪️ Алгоритмы и структуры данных — 31.669 ₽ вместо 39.900 ₽
▪️ Основы IT — 14.994 ₽ вместо 19.900 ₽
▪️ Архитектуры и шаблоны — 24.890 ₽ вместо 32.900 ₽
▪️ Python — 24.990 ₽ вместо 32.900 ₽
▪️ ML для Data Science — 34.000 ₽ вместо 44. 000 ₽
▪️ AI-агенты — 49.000 ₽ вместо 59.000 ₽
👉 Хватаем скидки из прошлого
P.S. Машину времени одолжили у дяди Миши
Но мы их вернули на последний день 🤔
До 00:00 третьего сентября (цены как до 1 сентября):
▪️ Математика для Data Science — 35.199 ₽ вместо 44.900 ₽
▪️ Алгоритмы и структуры данных — 31.669 ₽ вместо 39.900 ₽
▪️ Основы IT — 14.994 ₽ вместо 19.900 ₽
▪️ Архитектуры и шаблоны — 24.890 ₽ вместо 32.900 ₽
▪️ Python — 24.990 ₽ вместо 32.900 ₽
▪️ ML для Data Science — 34.000 ₽ вместо 44. 000 ₽
▪️ AI-агенты — 49.000 ₽ вместо 59.000 ₽
👉 Хватаем скидки из прошлого
P.S. Машину времени одолжили у дяди Миши
👍1
В продакшн Django-приложении пользователи жалуются на «N+1 проблему» при выборках связанных объектов. Как вы будете диагностировать и устранять её?
Проверю SQL-запросы через django-debug-toolbar или логирование ORM. Если вижу множественные запросы для связанных моделей — перепишу код с использованием select_related (для ForeignKey/OneToOne) или prefetch_related (для ManyToMany/Reverse FK). При необходимости — вынесу тяжёлые выборки в кастомные SQL-запросы или оптимизирую структуру модели.
Библиотека собеса по Python
Библиотека собеса по Python
👍2
😎 Сколько баллов набрали вы?
Голосуйте, какой у вас уровень разработчика:
😁 — 5-12 баллов (стажер)
👍 — 13-25 баллов (джуниор)
⚡️ — 26-40 баллов (джуниор+)
👏 — 41-60 баллов (миддл)
🔥 — 61-80 баллов (миддл+)
🎉 — 81-100 баллов (сеньор)
🤩 — 100+ баллов (тимлид)
Но вот в чем прикол — опытный разработчик набирает баллы не случайными косяками, а осознанными решениями.
👉 Научим, как быстро прокачаться от стажера до сеньора
Голосуйте, какой у вас уровень разработчика:
😁 — 5-12 баллов (стажер)
👍 — 13-25 баллов (джуниор)
⚡️ — 26-40 баллов (джуниор+)
👏 — 41-60 баллов (миддл)
🔥 — 61-80 баллов (миддл+)
🎉 — 81-100 баллов (сеньор)
🤩 — 100+ баллов (тимлид)
Но вот в чем прикол — опытный разработчик набирает баллы не случайными косяками, а осознанными решениями.
👉 Научим, как быстро прокачаться от стажера до сеньора
👍1
В высоконагруженном Python-сервисе вы замечаете, что CPU загружен слабо, но задержки обработки запросов постоянно растут. При анализе видно, что большая часть времени тратится на сетевые операции. Что может быть причиной и как это исправить?
Причина в том, что сервис выполняет блокирующие I/O-операции в потоках или синхронно. Для исправления нужно перейти на асинхронную модель (asyncio, uvloop), использовать асинхронные драйверы для работы с БД/HTTP и вынести тяжёлые операции в отдельный пул процессов или потоков.
Библиотека собеса по Python
Библиотека собеса по Python
👍2
🎮 КВЕСТОВАЯ ЛИНИЯ: «Путь Data Scientist'а»
⮕ Твой стартовый набор искателя данных:
⚡️ АКТИВЕН ВРЕМЕННЫЙ БАФФ: «Щедрость наставника»
Эффект: –30% к цене полного набора ДСника
Было: 121.800 ₽ → Стало: 84.900 ₽
☞ Что ждет тебя в этом квесте
📎 Забрать бафф
Рассрочки: 3 мес | 6 мес | 12 мес
⮕ Твой стартовый набор искателя данных:
Python — твое легендарное оружие (урон по багам +∞)
Математика — твой базовый интеллект (влияет на понимание алгоритмов)
Машинное обучение — твое дерево навыков (открывает новые способности)
⚡️ АКТИВЕН ВРЕМЕННЫЙ БАФФ: «Щедрость наставника»
Эффект: –30% к цене полного набора ДСника
Было: 121.800 ₽ → Стало: 84.900 ₽
☞ Что ждет тебя в этом квесте
— Получение артефактов: портфолио проектов и сертификаты— Прокачка от новичка до Senior Data Scientist— Босс-файты с реальными задачами из индустрии— Доступ к гильдии единомышленников
📎 Забрать бафф
Рассрочки: 3 мес | 6 мес | 12 мес
😢2
Что такое рефлексия?
Рефлексия — это возможность программы изучать и модифицировать свою структуру и поведение во время выполнения.
В отличие от интроспекции, которая позволяет получать информацию об объектах, рефлексия дает возможность изменять саму программу.
Основные возможности рефлексии в Python:
— Создание новых классов и объектов программно во время выполнения
— Изменение структуры класса в рантайме путем добавления/удаления атрибутов и методов
— Вызов методов по их именам, переданным в виде строк
— Создание прокси-объектов для перехвата вызовов функций и методов
Библиотека собеса по Python
В отличие от интроспекции, которая позволяет получать информацию об объектах, рефлексия дает возможность изменять саму программу.
Основные возможности рефлексии в Python:
— Создание новых классов и объектов программно во время выполнения
— Изменение структуры класса в рантайме путем добавления/удаления атрибутов и методов
— Вызов методов по их именам, переданным в виде строк
— Создание прокси-объектов для перехвата вызовов функций и методов
Библиотека собеса по Python
👍5
⚡️ Будь как этот гений с картинки — предлагай свои условия работодателю, а не наоборот!
Кто нужен?
Но если вы пока джун — я бы предложил:
- Full-time контракт: 180к/мес после курса + опцион на карьеру в топ-компаниях
- Либо фикс за проект: стань ML-инженером за 39к вместо 44к с промокодом LASTCALL
🔗 Старт 9 сентября
Кто нужен?
Senior ML-Engineer с опытом работы более 6 месяцев в FAANG компаниях. Требование: разработать кросс-платформенное приложение-трекер зарплат с AI-распознаванием вакансий по резюме.
Но если вы пока джун — я бы предложил:
- Full-time контракт: 180к/мес после курса + опцион на карьеру в топ-компаниях
- Либо фикс за проект: стань ML-инженером за 39к вместо 44к с промокодом LASTCALL
🔗 Старт 9 сентября
👍1
В продакшн-сервисе на Python вы замечаете постепенный рост потребления памяти (memory leak). Как будете искать и устранять проблему?
Соберу метрики памяти и сниму heap dump с помощью tracemalloc, objgraph или memory_profiler. Проверю, нет ли висящих ссылок (глобальные коллекции, кэш, циклические ссылки). Если виноваты сторонние библиотеки — обновлю или изолирую. Для оптимизации — внедрю лимиты, пулы объектов, кеш с TTL и мониторинг утечек в CI/CD.
Библиотека собеса по Python
Библиотека собеса по Python
👍5
Иногда реально ощущение, что нас держат в Матрице.
Большинство сидит, читает статьи про ML, смотрит ролики «как это работает» — и всё.
❗ Сегодня последний день промокода Lastcall (−5000 ₽).
Уже завтра стартует первый вебинар по Машинному обучению — полный набор для выхода из Матрицы.
Кто готов вырваться из симуляции и ворваться в сезон найма?
👾 — я уже в команде Нео
👍 — хочу красную таблетку
🤔 — пока думаю, но интересно
👉 Забронируй место сейчас
Большинство сидит, читает статьи про ML, смотрит ролики «как это работает» — и всё.
❗ Сегодня последний день промокода Lastcall (−5000 ₽).
Уже завтра стартует первый вебинар по Машинному обучению — полный набор для выхода из Матрицы.
Кто готов вырваться из симуляции и ворваться в сезон найма?
👾 — я уже в команде Нео
👍 — хочу красную таблетку
🤔 — пока думаю, но интересно
👉 Забронируй место сейчас
Для чего используются метаклассы?
Метаклассы используются для создания классов и позволяют изменять поведение класса, модифицировать процесс его создания.
Основные случаи использования метаклассов:
— Реализация паттернов проектирования, таких как Singleton, Factory Method и другие.
— Проверка типов. Метакласс может валидировать атрибуты класса, параметры методов, выполнять инъекцию зависимостей.
— Регистрация классов. С помощью метакласса можно автоматически регистрировать создаваемые классы, например, в глобальном реестре.
— Создание протоколов и интерфейсов, похожих на языки, подобные Protocol Buffers.
— Логирование и трассировка. Метакласс позволяет следить за созданием класса и вызовами его методов.
— Расширение класса дополнительным функционалом. Добавление методов к классу через метакласс.
Библиотека собеса по Python
Основные случаи использования метаклассов:
— Реализация паттернов проектирования, таких как Singleton, Factory Method и другие.
— Проверка типов. Метакласс может валидировать атрибуты класса, параметры методов, выполнять инъекцию зависимостей.
— Регистрация классов. С помощью метакласса можно автоматически регистрировать создаваемые классы, например, в глобальном реестре.
— Создание протоколов и интерфейсов, похожих на языки, подобные Protocol Buffers.
— Логирование и трассировка. Метакласс позволяет следить за созданием класса и вызовами его методов.
— Расширение класса дополнительным функционалом. Добавление методов к классу через метакласс.
Библиотека собеса по Python
👍1