В продакшене Python-сервис со временем начинает замедляться, хотя нагрузка остаётся стабильной. Мониторинг показывает рост памяти (memory leak). Как вы будете искать и устранять причину?
Использовать профайлеры (tracemalloc, objgraph, memory_profiler) для отслеживания утечек, проверить циклические ссылки и висящие ссылки на объекты (особенно в кэше или глобальных структурах), оптимизировать работу с коллекциями и сторонними библиотеками.
Библиотека собеса по Python
Библиотека собеса по Python
👍2
В продакшн Django-приложении пользователи жалуются на «N+1 проблему» при выборках связанных объектов. Как вы будете диагностировать и устранять её?
Проверю SQL-запросы через django-debug-toolbar или логирование ORM. Если вижу множественные запросы для связанных моделей — перепишу код с использованием select_related (для ForeignKey/OneToOne) или prefetch_related (для ManyToMany/Reverse FK). При необходимости — вынесу тяжёлые выборки в кастомные SQL-запросы или оптимизирую структуру модели.
Библиотека собеса по Python
Библиотека собеса по Python