Объясни, как Django управляет транзакциями: autocommit, transaction.atomic() (savepoint’ы и «broken» состояние), ATOMIC_REQUESTS, когда нужен select_for_update(), и что учитывать с CONN_MAX_AGE/PgBouncer.
По умолчанию autocommit: каждый ORM-запрос, меняющий БД, — своя транзакция. atomic() начинает транзакцию (или создаёт savepoint при вложенности); исключение помечает блок как broken → откат до ближайшего savepoint/транзакции; при выходе — commit или rollback. ATOMIC_REQUESTS=True автоматически оборачивает view, но может растягивать транзакции (долгие I/O, внешние вызовы) — применять выборочно. select_for_update() требует активной транзакции (atomic()), в Postgres можно nowait/skip_locked для борьбы с блокировками. Изоляция — та, что у БД (обычно READ COMMITTED). Соединения: CONN_MAX_AGE удерживает их открытыми; в проде обычно PgBouncer (session/transaction mode), следи за совместимостью с server-side курсорами и длительными транзакциями.
Библиотека собеса по Python
Библиотека собеса по Python
👍2
Как вычислить среднее значение, медиану, моду, дисперсию, стандартное отклонение и различные квантильные диапазоны в Pandas?
✔️ DataFrame.mean(): среднее
✔️ DataFrame.median(): медиана
✔️ DataFrame.mode(): мода
✔️ DataFrame.var(): дисперсия
✔️ DataFrame.std(): стандартное отклонение
✔️ DataFrame.quantile(): для расчета квантильного диапазона, используя значение диапазона в качестве параметра
Библиотека собеса по Python
✔️ DataFrame.median(): медиана
✔️ DataFrame.mode(): мода
✔️ DataFrame.var(): дисперсия
✔️ DataFrame.std(): стандартное отклонение
✔️ DataFrame.quantile(): для расчета квантильного диапазона, используя значение диапазона в качестве параметра
Библиотека собеса по Python
👍3