В продакшене Python-сервис со временем начинает замедляться, хотя нагрузка остаётся стабильной. Мониторинг показывает рост памяти (memory leak). Как вы будете искать и устранять причину?
Использовать профайлеры (tracemalloc, objgraph, memory_profiler) для отслеживания утечек, проверить циклические ссылки и висящие ссылки на объекты (особенно в кэше или глобальных структурах), оптимизировать работу с коллекциями и сторонними библиотеками.
Библиотека собеса по Python
Библиотека собеса по Python
👍5🔥3
В асинхронном Python-сервисе (asyncio) при росте нагрузки резко увеличиваются задержки отклика, хотя CPU и память не перегружены. В чём может быть причина и как её диагностировать?
Чаще всего дело в блокирующем коде внутри event loop (синхронные вызовы, тяжёлые вычисления или блокирующие I/O). Диагностировать можно профилировщиками (async-profiler, aiomonitor, trio-asyncio) и логированием длительных задач. Решение — вынести CPU-bound операции в ProcessPoolExecutor, заменить блокирующие вызовы на асинхронные аналоги или рефакторить архитектуру.
Библиотека собеса по Python
Библиотека собеса по Python
👍4🔥2
В высоконагруженном Python-сервисе вы замечаете, что при увеличении числа потоков скорость обработки CPU-bound задач не растёт. Почему так происходит и как это исправить?
Из-за GIL только один поток выполняет байткод одновременно, поэтому многопоточность не ускоряет CPU-bound задачи. Решение — использовать multiprocessing, вынести тяжёлые вычисления в C-расширения или применять библиотеки вроде NumPy, которые обходят GIL.
Библиотека собеса по Python
Библиотека собеса по Python
❤3
У вас есть Python-сервис, который обрабатывает асинхронные запросы через asyncio. При нагрузочном тесте задержки начинают расти, хотя CPU и память почти не используются. В чём может быть причина и как её решать?
Скорее всего, внутри event loop есть блокирующие операции (синхронные вызовы к БД, файлам или тяжёлые вычисления). Их нужно вынести в отдельный процесс или поток (ProcessPoolExecutor/ThreadPoolExecutor) либо заменить на асинхронные аналоги библиотек.
Библиотека собеса по Python
Библиотека собеса по Python
👍2
This media is not supported in your browser
VIEW IN TELEGRAM
7 октября стартует второй поток курса «AI-агенты для DS-специалистов».
За 5 недель вы научитесь собирать агентов, которые уже сейчас будут помогать бизнесу.
В кружке выше Максим Шаланкин, наш преподаватель, рассказывает подробнее — включай, чтобы не пропустить.
Please open Telegram to view this post
VIEW IN TELEGRAM