Почему многопоточность в Python не всегда ускоряет выполнение CPU-bound задач?
Из-за GIL одновременно выполняется только один поток байткода, поэтому для CPU-bound задач лучше использовать multiprocessing или выносить вычисления в нативный код.
Библиотека собеса по Python
Библиотека собеса по Python
👍6😁1
This media is not supported in your browser
VIEW IN TELEGRAM
📅 Сегодня в 19:00 МСК — бесплатный вебинар с Марией Жаровой.
Тема: «Введение в ML: как спрогнозировать стоимость недвижимости».
🔹 Разберём задачу прогноза стоимости недвижимости.
🔹 Покажем пошагово, как собрать первую модель.
🔹 Получите готовые скрипты для старта.
Не зайдёшь — будешь ещё год делать вид, что понимаешь графики в чужих презентациях.
👉 Регистрируйтесь
Тема: «Введение в ML: как спрогнозировать стоимость недвижимости».
🔹 Разберём задачу прогноза стоимости недвижимости.
🔹 Покажем пошагово, как собрать первую модель.
🔹 Получите готовые скрипты для старта.
Не зайдёшь — будешь ещё год делать вид, что понимаешь графики в чужих презентациях.
👉 Регистрируйтесь
👍1
В продакшене Python-сервис со временем начинает замедляться, хотя нагрузка остаётся стабильной. Мониторинг показывает рост памяти (memory leak). Как вы будете искать и устранять причину?
Использовать профайлеры (tracemalloc, objgraph, memory_profiler) для отслеживания утечек, проверить циклические ссылки и висящие ссылки на объекты (особенно в кэше или глобальных структурах), оптимизировать работу с коллекциями и сторонними библиотеками.
Библиотека собеса по Python
Библиотека собеса по Python
👍6🔥4
В асинхронном Python-сервисе (asyncio) при росте нагрузки резко увеличиваются задержки отклика, хотя CPU и память не перегружены. В чём может быть причина и как её диагностировать?
Чаще всего дело в блокирующем коде внутри event loop (синхронные вызовы, тяжёлые вычисления или блокирующие I/O). Диагностировать можно профилировщиками (async-profiler, aiomonitor, trio-asyncio) и логированием длительных задач. Решение — вынести CPU-bound операции в ProcessPoolExecutor, заменить блокирующие вызовы на асинхронные аналоги или рефакторить архитектуру.
Библиотека собеса по Python
Библиотека собеса по Python
👍4🔥2
В высоконагруженном Python-сервисе вы замечаете, что при увеличении числа потоков скорость обработки CPU-bound задач не растёт. Почему так происходит и как это исправить?
Из-за GIL только один поток выполняет байткод одновременно, поэтому многопоточность не ускоряет CPU-bound задачи. Решение — использовать multiprocessing, вынести тяжёлые вычисления в C-расширения или применять библиотеки вроде NumPy, которые обходят GIL.
Библиотека собеса по Python
Библиотека собеса по Python
❤5
У вас есть Python-сервис, который обрабатывает асинхронные запросы через asyncio. При нагрузочном тесте задержки начинают расти, хотя CPU и память почти не используются. В чём может быть причина и как её решать?
Скорее всего, внутри event loop есть блокирующие операции (синхронные вызовы к БД, файлам или тяжёлые вычисления). Их нужно вынести в отдельный процесс или поток (ProcessPoolExecutor/ThreadPoolExecutor) либо заменить на асинхронные аналоги библиотек.
Библиотека собеса по Python
Библиотека собеса по Python
👍3
This media is not supported in your browser
VIEW IN TELEGRAM
7 октября стартует второй поток курса «AI-агенты для DS-специалистов».
За 5 недель вы научитесь собирать агентов, которые уже сейчас будут помогать бизнесу.
В кружке выше Максим Шаланкин, наш преподаватель, рассказывает подробнее — включай, чтобы не пропустить.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1👾1
Вы запускаете высоконагруженный Python-сервис на asyncio. Со временем отклик начинает расти, хотя CPU и память загружены слабо. В чём может быть причина и как подойти к решению?
Обычно это значит, что внутри event loop выполняется блокирующий код (синхронные запросы к БД, тяжёлые вычисления, блокирующие I/O). Их нужно вынести в отдельные процессы/пулы потоков (ProcessPoolExecutor, ThreadPoolExecutor) или заменить на асинхронные аналоги библиотек.
Библиотека собеса по Python
Библиотека собеса по Python
👍1
This media is not supported in your browser
VIEW IN TELEGRAM
❗ Так, владелец макбука. Хватит позировать в кофейне.
Настоящее портфолио — это не стикеры на крышке, а проект с чистым кодом, README и рабочей демкой.
Не знаешь, как такой собрать? Научим. Наш курс «ML для старта в Data Science» — это пошаговый гайд к проекту, за который не стыдно.
ОСТАЛАСЬ НЕДЕЛЯ, чтобы забрать его по старой цене в 44.000 ₽. С 1 сентября — всё.
🎁 И да, при покупке курса ML до 1 сентября — курс по Python получаешь бесплатно.
👉 Апгрейд от «вайба» до «оффера» тут
Настоящее портфолио — это не стикеры на крышке, а проект с чистым кодом, README и рабочей демкой.
Не знаешь, как такой собрать? Научим. Наш курс «ML для старта в Data Science» — это пошаговый гайд к проекту, за который не стыдно.
ОСТАЛАСЬ НЕДЕЛЯ, чтобы забрать его по старой цене в 44.000 ₽. С 1 сентября — всё.
🎁 И да, при покупке курса ML до 1 сентября — курс по Python получаешь бесплатно.
👉 Апгрейд от «вайба» до «оффера» тут
👍1
Вы разрабатываете высоконагруженный сервис на FastAPI. При нагрузочном тестировании видно, что время отклика сильно растёт, хотя CPU и память используются не полностью. Какие могут быть причины и как вы будете решать проблему?
Чаще всего проблема в блокирующем коде (синхронные запросы к БД, внешним API или тяжёлые вычисления), который “забивает” event loop. Нужно вынести такие операции в ThreadPoolExecutor/ProcessPoolExecutor или заменить их на асинхронные аналоги (например, httpx.AsyncClient, databases, async-драйверы для SQL/NoSQL). Также стоит проверить конфигурацию Uvicorn/Gunicorn (число воркеров, workers-per-core) и настроить connection pooling.
Библиотека собеса по Python
Библиотека собеса по Python
🔥3👍1😁1
В Kubernetes-продакшене пользователи жалуются, что при резком росте нагрузки часть запросов теряется или обрабатывается с большим лагом. Как вы будете искать и решать проблему?
Проверю метрики Pod’ов и нод (CPU/memory), события в кластере и логи ingress-контроллера. Удостоверюсь, что настроены requests/limits, HPA для автоматического масштабирования и readinessProbe, чтобы трафик шёл только на готовые Pod’ы. Для решения — оптимизировать ресурсы, включить горизонтальное или кластерное авто-масштабирование, при необходимости добавить очередь (Kafka/RabbitMQ) для сглаживания пиков.
Библиотека собеса по Python
Проверю метрики Pod’ов и нод (CPU/memory), события в кластере и логи ingress-контроллера. Удостоверюсь, что настроены requests/limits, HPA для автоматического масштабирования и readinessProbe, чтобы трафик шёл только на готовые Pod’ы. Для решения — оптимизировать ресурсы, включить горизонтальное или кластерное авто-масштабирование, при необходимости добавить очередь (Kafka/RabbitMQ) для сглаживания пиков.
Библиотека собеса по Python
👍1
📢 Какой сетап идеально подойдёт для разработки AI-агента?
Голосуйте за свой вариант и пишите в комментариях, в каком режиме вы реально кодите.
❤️ — 1
👍 — 2
⚡️ — 3
👏 — 4
🔥 — 5
🎉 — 6
😁 — 7
😍 — 8
🤩 — 9
Какой бы сетап ни был, без AI-агентов в 2025 всё равно далеко не уедешь.
👉 Научим, как строить агентов, которые кодят с тобой
Голосуйте за свой вариант и пишите в комментариях, в каком режиме вы реально кодите.
❤️ — 1
👍 — 2
⚡️ — 3
👏 — 4
🔥 — 5
🎉 — 6
😁 — 7
😍 — 8
🤩 — 9
Какой бы сетап ни был, без AI-агентов в 2025 всё равно далеко не уедешь.
👉 Научим, как строить агентов, которые кодят с тобой
🎉4😁2🔥1🤩1😍1