Programming Resources | Python | Javascript | Artificial Intelligence Updates | Computer Science Courses | AI Books
56.2K subscribers
878 photos
3 videos
4 files
345 links
Everything about programming for beginners
* Python programming
* Java programming
* App development
* Machine Learning
* Data Science

Managed by: @love_data
Download Telegram
DSA Roadmap: Part 1 – Time & Space Complexity ⏱️📊

Understanding time and space complexity is crucial for writing efficient code. It helps you estimate how your algorithm will perform as input size grows.

1️⃣ What is Time Complexity? 
Time complexity tells us how fast an algorithm runs based on input size (n). It doesn't measure time in seconds — it measures growth rate.

Example (Python):
for i in range(n):
    print(i)

Runs n times → O(n) time

Example (Java):
for (int i = 0; i < n; i++) {
    System.out.println(i);
}

Example (C++):
for (int i = 0; i < n; i++) {
    cout << i << endl;
}

2️⃣ Common Time Complexities (Best to Worst): 
O(1) – Constant (e.g., array access) 
O(log n) – Logarithmic (e.g., binary search) 
O(n) – Linear (e.g., single loop) 
O(n log n) – Efficient sorting (e.g., merge sort) 
O(n²) – Quadratic (e.g., nested loops) 
O(2ⁿ), O(n!) – Very slow (e.g., recursive brute force)

3️⃣ What is Space Complexity? 
It tells us how much extra memory your code uses depending on input size.

Example:
arr = [0] * n  # O(n) space

If no extra structures are used → O(1) space

4️⃣ Why It Matters 
• Handles large inputs without crashing 
• Crucial in coding interviews 
• Essential for scalable systems

5️⃣ Practice Task – Guess the Complexity

a) Nested loop
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
        System.out.println(i + ", " + j);
    }
}

// O(n²)

b) Binary search
while (low <= high) {
    int mid = (low + high) / 2;
    if (arr[mid] == target) break;
}

// O(log n)

c) Recursive Fibonacci
def fib(n):
    if n <= 1:
        return n
    return fib(n-1) + fib(n-2)

// O(2^n)

Takeaway: 
Always analyze two things before solving any problem: 
How many steps will this take? (Time) 
How much memory does it use? (Space)

💬 Tap ❤️ for more
6👌4
DSA Part 2 – Recursion 🔁🧠

Recursion is when a function calls itself to solve smaller subproblems. It's powerful but needs a base case to avoid infinite loops.

1️⃣ What is Recursion?
A recursive function solves a part of the problem and calls itself on the remaining part.

Basic Python Example:
def countdown(n):
if n == 0:
print("Done!")
return
print(n)
countdown(n - 1)

▶️ Counts down from n to 0

2️⃣ Key Parts of Recursion:
Base case – Stops recursion
Recursive case – Function calls itself

Java Example – Factorial:
int factorial(int n) {
if (n == 0) return 1;
return n * factorial(n - 1);
}

C++ Example – Sum of Array:
int sum(int arr[], int n) {
if (n == 0) return 0;
return arr[n - 1] + sum(arr, n - 1);
}

3️⃣ Why Use Recursion?
• Breaks complex problems into simpler ones
• Great for trees, graphs, backtracking, divide conquer

4️⃣ When Not to Use It?
• Large inputs can cause stack overflow
• Use loops if recursion is too deep or inefficient

5️⃣ Practice Task:
Write a recursive function to calculate power (a^b)
Write a function to reverse a string recursively
Try basic Fibonacci using recursion

👇 Solution for Practice Task

1. Recursive Power Function (a^b)

Python:
def power(a, b):
if b == 0:
return 1
return a * power(a, b - 1)

print(power(2, 3)) # Output: 8

C++:
int power(int a, int b) {
if (b == 0) return 1;
return a * power(a, b - 1);
}
// Example: cout << power(2, 3); // Output: 8

Java:
int power(int a, int b) {
if (b == 0) return 1;
return a * power(a, b - 1);
}
// Example: System.out.println(power(2, 3)); // Output: 8

2. Reverse String Recursively

Python:
def reverse(s):
if len(s) == 0:
return ""
return reverse(s[1:]) + s[0]

print(reverse("hello")) # Output: "olleh"

C++:
string reverse(string s) {
if (s.length() == 0) return "";
return reverse(s.substr(1)) + s[0];
}
// Example: cout << reverse("hello"); // Output: "olleh"

Java:
String reverse(String s) {
if (s.isEmpty()) return "";
return reverse(s.substring(1)) + s.charAt(0);
}
// Example: System.out.println(reverse("hello")); // Output: "olleh"

3. Fibonacci Using Recursion

Python:
def fib(n):
if n <= 1:
return n
return fib(n - 1) + fib(n - 2)

print(fib(6)) # Output: 8

C++:
int fib(int n) {
if (n <= 1) return n;
return fib(n - 1) + fib(n - 2);
}
// Example: cout << fib(6); // Output: 8

Java:
int fib(int n) {
if (n <= 1) return n;
return fib(n - 1) + fib(n - 2);
}
// Example: System.out.println(fib(6)); // Output: 8

*Double Tap ♥️ For More*
8👍1
DSA Part 3 – Arrays & Sliding Window 📊🧠

Arrays are the foundation of data structures. Mastering them unlocks many advanced topics like sorting, searching, and dynamic programming.

1️⃣ What is an Array?
An array is a collection of elements stored at contiguous memory locations. All elements are of the same data type.

Python Example:
arr = [10, 20, 30, 40]
print(arr[2]) # Output: 30

C++ Example:
int arr[] = {10, 20, 30, 40};
cout << arr[2]; // Output: 30

Java Example:
int[] arr = {10, 20, 30, 40};
System.out.println(arr[2]); // Output: 30

2️⃣ Basic Array Operations:
• Insert
• Delete
• Traverse
• Search
• Update

Python – Traversal:
for i in arr:
print(i)

C++ – Search:
for (int i = 0; i < n; i++) {
if (arr[i] == key) {
// Found
}
}

Java – Update:
arr[1] = 99;  // Updates second element

3️⃣ Sliding Window Technique 🪟
Used to reduce time complexity in problems involving subarrays or substrings.

▶️ Fixed-size window:
Find max sum of subarray of size k
▶️ Variable-size window:
Find longest substring with unique characters

4️⃣ Sliding Window – Max Sum Subarray (Size k)

Python:
def max_sum(arr, k):
window_sum = sum(arr[:k])
max_sum = window_sum
for i in range(k, len(arr)):
window_sum += arr[i] - arr[i - k]
max_sum = max(max_sum, window_sum)
return max_sum

print(max_sum([1, 4, 2, 10, 2, 3], 3)) # Output: 16

5️⃣ Practice Tasks:
Find the second largest element in an array
Implement sliding window to find max sum subarray
Try variable-size window: longest substring without repeating characters

👇 Solution for Practice Tasks

1. Find the Second Largest Element in an Array

Python:
def second_largest(arr):
first = second = float('-inf')
for num in arr:
if num > first:
second = first
first = num
elif first > num > second:
second = num
return second if second != float('-inf') else None

print(second_largest([10, 20, 4, 45, 99])) # Output: 45

2. Max Sum Subarray (Fixed-size Sliding Window)

Python:
def max_sum(arr, k):
window_sum = sum(arr[:k])
max_sum = window_sum
for i in range(k, len(arr)):
window_sum += arr[i] - arr[i - k]
max_sum = max(max_sum, window_sum)
return max_sum

print(max_sum([1, 4, 2, 10, 2, 3, 1, 0, 20], 4)) # Output: 24

3. Longest Substring Without Repeating Characters (Variable-size Sliding Window)

Python:
def longest_unique_substring(s):
seen = {}
left = max_len = 0
for right in range(len(s)):
if s[right] in seen and seen[s[right]] >= left:
left = seen[s[right]] + 1
seen[s[right]] = right
max_len = max(max_len, right - left + 1)
return max_len

print(longest_unique_substring("abcabcbb")) # Output: 3 ("abc")

Double Tap ♥️ For Part-4
11
𝗙𝗥𝗘𝗘 𝗢𝗻𝗹𝗶𝗻𝗲 𝗠𝗮𝘀𝘁𝗲𝗿𝗰𝗹𝗮𝘀𝘀 𝗢𝗻 𝗟𝗮𝘁𝗲𝘀𝘁 𝗧𝗲𝗰𝗵𝗻𝗼𝗹𝗼𝗴𝗶𝗲𝘀😍

- Data Science 
- AI/ML
- Data Analytics
- UI/UX
- Full-stack Development 

Get Job-Ready Guidance in Your Tech Journey

𝗥𝗲𝗴𝗶𝘀𝘁𝗲𝗿 𝗙𝗼𝗿 𝗙𝗥𝗘𝗘👇:- 

https://pdlink.in/4sw5Ev8

Date :- 11th January 2026
2
DSA Part 4 – Strings: Patterns, Hashing & Two Pointers 🔤🧩

Strings are everywhere—from passwords to DNA sequences. Mastering string manipulation unlocks powerful algorithms in pattern matching, text processing, and optimization.

1️⃣ What is a String?
A string is a sequence of characters. In most languages, strings are immutable and indexed like arrays.

Python Example:
s = "hello"
print(s[1]) # Output: 'e'

C++ Example:
string s = "hello";
cout << s[1]; // Output: 'e'

Java Example:
String s = "hello";
System.out.println(s.charAt(1)); // Output: 'e'

2️⃣ Common String Operations:
• Concatenation
• Substring
• Comparison
• Reversal
• Search
• Replace

Python – Reversal:
s = "hello"
print(s[::-1]) # Output: 'olleh'

C++ – Substring:
string s = "hello";
cout << s.substr(1, 3); // Output: 'ell'

Java – Replace:
String s = "hello";
System.out.println(s.replace("l", "x")); // Output: 'hexxo'

3️⃣ Pattern Matching – Naive vs Efficient
Naive Approach: Check every substring
Efficient: Use hashing or KMP (Knuth-Morris-Pratt)

Python – Naive Pattern Search:
def search(text, pattern):
for i in range(len(text) - len(pattern) + 1):
if text[i:i+len(pattern)] == pattern:
print(f"Found at index {i}")

search("abracadabra", "abra") # Output: Found at index 0, 7

4️⃣ Hashing for Fast Lookup
Use hash maps to store character counts, frequencies, or indices.

Python – First Unique Character:
from collections import Counter

def first_unique_char(s):
count = Counter(s)
for i, ch in enumerate(s):
if count[ch] == 1:
return i
return -1

print(first_unique_char("leetcode")) # Output: 0

5️⃣ Two Pointers Technique
Used for problems like palindromes, anagrams, or substring windows.

Python – Valid Palindrome:
def is_palindrome(s):
s = ''.join(filter(str.isalnum, s)).lower()
left, right = 0, len(s) - 1
while left < right:
if s[left] != s[right]:
return False
left += 1
right -= 1
return True

print(is_palindrome("A man, a plan, a canal: Panama")) # Output: True

6️⃣ Practice Tasks:
Implement pattern search (naive)
Find first non-repeating character
Check if a string is a palindrome
Use two pointers to reverse vowels in a string
Try Rabin-Karp or KMP for pattern matching

💬 Double Tap ❤️ for Part-5
5
𝗛𝗶𝗴𝗵 𝗗𝗲𝗺𝗮𝗻𝗱𝗶𝗻𝗴 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗪𝗶𝘁𝗵 𝗣𝗹𝗮𝗰𝗲𝗺𝗲𝗻𝘁 𝗔𝘀𝘀𝗶𝘀𝘁𝗮𝗻𝗰𝗲😍

Learn from IIT faculty and industry experts.

IIT Roorkee DS & AI Program :- https://pdlink.in/4qHVFkI

IIT Patna AI & ML :- https://pdlink.in/4pBNxkV

IIM Mumbai DM & Analytics :- https://pdlink.in/4jvuHdE

IIM Rohtak Product Management:- https://pdlink.in/4aMtk8i

IIT Roorkee Agentic Systems:- https://pdlink.in/4aTKgdc

Upskill in today’s most in-demand tech domains and boost your career 🚀
1
DSA Part 5 – Linked Lists: Single, Double & Reverse 🔁🔗📚

Linked Lists are dynamic data structures ideal for scenarios requiring frequent insertions and deletions. Unlike arrays, they don’t need contiguous memory and offer flexible memory usage.

1️⃣ What is a Linked List?
A Linked List is a linear data structure where each element (node) contains:
- Data
- Pointer to the next node (and optionally the previous node)

Types:
- Singly Linked List: Each node points to the next
- Doubly Linked List: Nodes point to both next and previous
- Circular Linked List: Last node points back to the head

2️⃣ Singly Linked List – Basic Structure

Python
class Node:
    def __init__(self, data):
        self.data = data
        self.next = None


Java
class Node {
    int data;
    Node next;
    Node(int data) {
        this.data = data;
        this.next = null;
    }
}


C++
struct Node {
    int data;
    Node* next;
    Node(int data): data(data), next(nullptr) {}
};


3️⃣ Insert at Head (Singly)

Python
def insert_head(head, data):
    new_node = Node(data)
    new_node.next = head
    return new_node


Java
Node insertHead(Node head, int data) {
    Node newNode = new Node(data);
    newNode.next = head;
    return newNode;
}


C++
Node* insertHead(Node* head, int data) {
    Node* newNode = new Node(data);
    newNode->next = head;
    return newNode;
}


4️⃣ Doubly Linked List – Bi-directional Pointers

Python
class DNode:
    def __init__(self, data):
        self.data = data
        self.prev = None
        self.next = None


Java
class DNode {
    int data;
    DNode prev, next;
    DNode(int data) {
        this.data = data;
    }
}


C++
struct DNode {
    int data;
    DNode* prev;
    DNode* next;
    DNode(int data): data(data), prev(nullptr), next(nullptr) {}
};


5️⃣ Insert at Head (Doubly)

Python
def insert_head(head, data):
    new_node = DNode(data)
    new_node.next = head
    if head:
        head.prev = new_node
    return new_node


Java
DNode insertHead(DNode head, int data) {
    DNode newNode = new DNode(data);
    newNode.next = head;
    if (head != null) head.prev = newNode;
    return newNode;
}


C++
DNode* insertHead(DNode* head, int data) {
    DNode* newNode = new DNode(data);
    newNode->next = head;
    if (head) head->prev = newNode;
    return newNode;
}


6️⃣ Reversing a Singly Linked List

Python
def reverse_list(head):
    prev = None
    current = head
    while current:
        next_node = current.next
        current.next = prev
        prev = current
        current = next_node
    return prev


Java
Node reverseList(Node head) {
    Node prev = null, current = head;
    while (current != null) {
        Node next = current.next;
        current.next = prev;
        prev = current;
        current = next;
    }
    return prev;
}


C++
Node* reverseList(Node* head) {
    Node* prev = nullptr;
    Node* current = head;
    while (current) {
        Node* next = current->next;
        current->next = prev;
        prev = current;
        current = next;
    }
    return prev;
}


7️⃣ Why Use Linked Lists?
Dynamic memory allocation
Efficient insert/delete (O(1) at head/tail)
Slower access (O(n) for random access)
Great for implementing stacks, queues, hash maps, etc.

8️⃣ Practice Tasks
Implement singly linked list with insert/delete
Implement doubly linked list with insert at tail
Reverse a singly linked list
5
📊 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲😍

🚀Upgrade your skills with industry-relevant Data Analytics training at ZERO cost 

Beginner-friendly
Certificate on completion
High-demand skill in 2026

𝐋𝐢𝐧𝐤 👇:- 

https://pdlink.in/497MMLw

📌 100% FREE – Limited seats available!
1👍1
Coding interview questions with concise answers for software roles:

1️⃣ What happens when you type a URL and hit Enter?
Answer:
- DNS Lookup → IP address
- Browser sends HTTP/HTTPS request
- Server responds with HTML/CSS/JS
- Browser builds DOM, applies styles (CSSOM), runs JS
- Page is rendered


2️⃣ Difference between var, let, and const?
Answer:
- var: function-scoped, hoisted
- let: block-scoped, not hoisted
- const: block-scoped, can’t be reassigned


3️⃣ Reverse a String in JavaScript
function reverseString(str) {
return str.split('').reverse().join('');
}

4️⃣ Find the max number in an array
const max = Math.max(...arr);

5️⃣ Write a function to check if a number is prime
function isPrime(n) {
if (n < 2) return false;
for (let i = 2; i <= Math.sqrt(n); i++) {
if (n % i === 0) return false;
}
return true;
}

6️⃣ What is closure in JavaScript?
Answer:
A function that remembers variables from its outer scope even after the outer function has returned.

7️⃣ What is event delegation?
Answer:
Attaching a single event listener to a parent element to manage events on its children using event.target.

8️⃣ Difference between == and ===
Answer:
- == checks value (with type coercion)
- === checks value + type (strict comparison)

9️⃣ What is the Virtual DOM?
Answer:
A lightweight copy of the real DOM used in React. React updates the virtual DOM first and then applies only the changes to the real DOM for efficiency.

🔟 Write code to remove duplicates from an array
const uniqueArr = [...new Set(arr)];

React ❤️ for more
4
Learn Trending Skills in 2026 🔰

1. Web Development ➝
◀️ https://t.iss.one/webdevcoursefree

2. CSS ➝
◀️ https://css-tricks.com

3. JavaScript ➝
◀️ https://t.iss.one/javascript_courses

4. React ➝
◀️ https://react-tutorial.app

5. Tailwind CSS ➝
◀️ https://scrimba.com

6. Data Science  ➝
◀️ https://t.iss.one/datasciencefun

7. Python ➝
◀️ https://pythontutorial.net

8. SQL ➝
◀️  https://t.iss.one/sqlanalyst

◀️ https://stratascratch.com/?via=free

9. Git and GitHub ➝
◀️ https://GitFluence.com

10. Blockchain ➝
◀️ https://t.iss.one/Bitcoin_Crypto_Web

11. Mongo DB ➝
◀️ https://mongodb.com

12. Node JS ➝
◀️ https://nodejsera.com

13. English Speaking ➝
◀️ https://t.iss.one/englishlearnerspro

14. C#➝
◀️https://learn.microsoft.com/en-us/training/paths/get-started-c-sharp-part-1/

15. Excel➝
◀️ https://t.iss.one/excel_analyst

16. Generative AI➝
◀️ https://t.iss.one/generativeai_gpt

17. App Development ➝
◀️ https://t.iss.one/appsuser

18. Power BI ➝
◀️ https://t.iss.one/powerbi_analyst

19. Tableau ➝
◀️ https://www.tableau.com/learn/training

20. Machine Learning ➝
◀️ https://developers.google.com/machine-learning/crash-course

21. Artificial intelligence ➝
◀️ https://t.iss.one/machinelearning_deeplearning/

22. Data Analytics ➝
◀️ https://medium.com/@data_analyst

◀️ https://www.linkedin.com/company/sql-analysts

23. Java ➝
◀️ https://t.iss.one/Java_Programming_Notes

◀️ https://learn.microsoft.com/shows/java-for-beginners/

24. C/C++ ➝

◀️ https://docs.microsoft.com/en-us/cpp/c-language/?view=msvc-170&viewFallbackFrom=vs-2019

25. Data Structures ➝
◀️ https://leetcode.com/study-plan/data-structure/

26. Cybersecurity ➝
◀️ https://t.iss.one/EthicalHackingToday

27. Linux ➝
◀️ https://bit.ly/3KhPdf1

◀️ https://training.linuxfoundation.org/resources/

28. Typescript ➝
◀️ https://learn.microsoft.com/training/paths/build-javascript-applications-typescript/

29. Deep Learning ➝
◀️ https://introtodeeplearning.com

30. Compiler Design ➝
◀️ https://online.stanford.edu/courses/soe-ycscs1-compilers

31. DSA ➝
◀️ https://techdevguide.withgoogle.com/paths/data-structures-and-algorithms/

32. Prompt Engineering ➝
◀️ https://www.promptingguide.ai/

◀️ https://t.iss.one/aiindi

Join @free4unow_backup for more free courses

Like for more ❤️

ENJOY LEARNING👍👍
4
10 Key Programming Differences! 💻🚀

1️⃣ Python 2 vs Python 3
➡️ Python 2: Legacy, no updates
➡️ Python 3: Modern, better syntax support
📌 Always use Python 3 for new projects.

2️⃣ Static vs Dynamic Typing
➡️ Static: Type declared (e.g., Java, C++)
➡️ Dynamic: Type inferred at runtime (e.g., Python, JavaScript)
📌 Static = fewer bugs, Dynamic = faster dev

3️⃣ Abstraction vs Encapsulation
➡️ Abstraction: Hides complexity
➡️ Encapsulation: Hides data
📌 Abstraction = "What", Encapsulation = "How"

4️⃣ REST vs SOAP (APIs)
➡️ REST: Lightweight, uses HTTP
➡️ SOAP: Protocol, strict rules
📌 REST is more common today

5️⃣ SQL vs NoSQL
➡️ SQL: Structured data, tables (e.g., MySQL)
➡️ NoSQL: Unstructured, scalable (e.g., MongoDB)
📌 SQL = Relational, NoSQL = Flexible

6️⃣ For Loop vs While Loop
➡️ For: Known iterations
➡️ While: Unknown, condition-based
📌 Use for when count is known.

7️⃣ Function vs Method
➡️ Function: Independent block
➡️ Method: Function inside class
📌 All methods are functions, not vice versa

8️⃣ Frontend vs Backend
➡️ Frontend: User interface (HTML, CSS, JS)
➡️ Backend: Server logic, DB (Node.js, Python, etc.)
📌 Frontend = what users see

9️⃣ Procedural vs OOP
➡️ Procedural: Functions logic
➡️ OOP: Objects, classes
📌 OOP = more modular reusable

🔟 Null vs Undefined (JavaScript)
➡️ Null: Assigned empty value
➡️ Undefined: Variable declared, not assigned
📌 typeof null is 'object', quirky but true!

💬 Tap ❤️ if you found this helpful!
5
Core Data Structures Part 2 – Stacks Queues 📚📥📤

Stacks and queues are fundamental linear data structures used in many algorithms and real-world applications like undo operations, task scheduling, and more.

1️⃣ What is a Stack?
A Stack is a Last-In-First-Out (LIFO) structure.
Think of a stack of plates: you add (push) and remove (pop) from the top.

Operations:
• push(item) – Add item to the top
• pop() – Remove item from the top
• peek() – View top item without removing
• is_empty() – Check if stack is empty

Python Implementation (Using List)
stack = []

# Push
stack.append(10)
stack.append(20)

# Pop
print(stack.pop()) # 20

# Peek
print(stack[-1]) # 10

# Check empty
print(len(stack) == 0)


2️⃣ What is a Queue?
A Queue is a First-In-First-Out (FIFO) structure.
Think of a line at a ticket counter: first come, first served.

Operations:
• enqueue(item) – Add item to the rear
• dequeue() – Remove item from the front
• peek() – View front item
• is_empty() – Check if queue is empty

Python Implementation (Using collections.deque)
from collections import deque

queue = deque()

# Enqueue
queue.append(10)
queue.append(20)

# Dequeue
print(queue.popleft()) # 10

# Peek
print(queue[0]) # 20

# Check empty
print(len(queue) == 0)


3️⃣ Stack Using Linked List (Python)
class Node:
def __init__(self, data):
self.data = data
self.next = None

class Stack:
def __init__(self):
self.top = None

def push(self, data):
node = Node(data)
node.next = self.top
self.top = node

def pop(self):
if not self.top:
return None
data = self.top.data
self.top = self.top.next
return data


4️⃣ Queue Using Linked List (Python)
class Node:
def __init__(self, data):
self.data = data
self.next = None

class Queue:
def __init__(self):
self.front = self.rear = None

def enqueue(self, data):
node = Node(data)
if not self.rear:
self.front = self.rear = node
else:
self.rear.next = node
self.rear = node

def dequeue(self):
if not self.front:
return None
data = self.front.data
self.front = self.front.next
if not self.front:
self.rear = None
return data


📝 Practice Tasks
1. Implement a stack using a list
2. Implement a queue using a list
3. Reverse a string using a stack
4. Check for balanced parentheses using a stack
5. Simulate a queue using two stacks

Double Tap ♥️ For More
4
𝗕𝗲𝗰𝗼𝗺𝗲 𝗮 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗲𝗱 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘀𝘁 𝗜𝗻 𝗧𝗼𝗽 𝗠𝗡𝗖𝘀😍

Learn Data Analytics, Data Science & AI From Top Data Experts 

𝗛𝗶𝗴𝗵𝗹𝗶𝗴𝗵𝘁𝗲𝘀:- 

- 12.65 Lakhs Highest Salary
- 500+ Partner Companies
- 100% Job Assistance
- 5.7 LPA Average Salary

𝗕𝗼𝗼𝗸 𝗮 𝗙𝗥𝗘𝗘 𝗗𝗲𝗺𝗼👇:-

𝗢𝗻𝗹𝗶𝗻𝗲:- https://pdlink.in/4fdWxJB

🔹 Hyderabad :- https://pdlink.in/4kFhjn3

🔹 Pune:-  https://pdlink.in/45p4GrC

🔹 Noida :-  https://linkpd.in/DaNoida

( Hurry Up 🏃‍♂️Limited Slots )
2
𝟱 𝗖𝗼𝗱𝗶𝗻𝗴 𝗖𝗵𝗮𝗹𝗹𝗲𝗻𝗴𝗲𝘀 𝗧𝗵𝗮𝘁 𝗔𝗰𝘁𝘂𝗮𝗹𝗹𝘆 𝗠𝗮𝘁𝘁𝗲𝗿 𝗙𝗼𝗿 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝘁𝗶𝘀𝘁𝘀 💻

You don’t need to be a LeetCode grandmaster.
But data science interviews still test your problem-solving mindset—and these 5 types of challenges are the ones that actually matter.

Here’s what to focus on (with examples) 👇

🔹 1. String Manipulation (Common in Data Cleaning)

Parse messy columns (e.g., split “Name_Age_City”)
Regex to extract phone numbers, emails, URLs
Remove stopwords or HTML tags in text data

Example: Clean up a scraped dataset from LinkedIn bias

🔹 2. GroupBy and Aggregation with Pandas

Group sales data by product/region
Calculate avg, sum, count using .groupby()
Handle missing values smartly

Example: “What’s the top-selling product in each region?”

🔹 3. SQL Join + Window Functions

INNER JOIN, LEFT JOIN to merge tables
ROW_NUMBER(), RANK(), LEAD(), LAG() for trends
Use CTEs to break complex queries

Example: “Get 2nd highest salary in each department”

🔹 4. Data Structures: Lists, Dicts, Sets in Python

Use dictionaries to map, filter, and count
Remove duplicates with sets
List comprehensions for clean solutions

Example: “Count frequency of hashtags in tweets”

🔹 5. Basic Algorithms (Not DP or Graphs)

Sliding window for moving averages
Two pointers for duplicate detection
Binary search in sorted arrays

Example: “Detect if a pair of values sum to 100”

🎯 Tip: Practice challenges that feel like real-world data work, not textbook CS exams.

Use platforms like:

StrataScratch
Hackerrank (SQL + Python)
Kaggle Code

I have curated the best interview resources to crack Data Science Interviews
👇👇
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like if you need similar content 😄👍
2
𝗧𝗵𝗲 𝟯 𝗦𝗸𝗶𝗹𝗹𝘀 𝗧𝗵𝗮𝘁 𝗪𝗶𝗹𝗹 𝗠𝗮𝗸𝗲 𝗬𝗼𝘂 𝗨𝗻𝘀𝘁𝗼𝗽𝗽𝗮𝗯𝗹𝗲 𝗶𝗻 𝟮𝟬𝟮𝟲😍

Start learning for FREE and earn a certification that adds real value to your resume.

𝗖𝗹𝗼𝘂𝗱 𝗖𝗼𝗺𝗽𝘂𝘁𝗶𝗻𝗴:- https://pdlink.in/3LoutZd

𝗖𝘆𝗯𝗲𝗿 𝗦𝗲𝗰𝘂𝗿𝗶𝘁𝘆:- https://pdlink.in/3N9VOyW

𝗕𝗶𝗴 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀:- https://pdlink.in/497MMLw

👉 Enroll today & future-proof your career!
1
Full-Stack Development Basics You Should Know 🌐💡

1️⃣ What is Full-Stack Development?
Full-stack dev means working on both the frontend (client-side) and backend (server-side) of a web application. 🔄

2️⃣ Frontend (What Users See)
Languages & Tools:
- HTML – Structure 🏗️
- CSS – Styling 🎨
- JavaScript – Interactivity
- React.js / Vue.js – Frameworks for building dynamic UIs ⚛️

3️⃣ Backend (Behind the Scenes)
Languages & Tools:
- Node.js, Python, PHP – Handle server logic 💻
- Express.js, Django – Frameworks ⚙️
- Database – MySQL, MongoDB, PostgreSQL 🗄️

4️⃣ API (Application Programming Interface)
- Connect frontend to backend using REST APIs 🤝
- Send and receive data using JSON 📦

5️⃣ Database Basics
- SQL: Structured data (tables) 📊
- NoSQL: Flexible data (documents) 📄

6️⃣ Version Control
- Use Git and GitHub to manage and share code 🧑‍💻

7️⃣ Hosting & Deployment
- Host frontend: Vercel, Netlify 🚀
- Host backend: Render, Railway, Heroku ☁️

8️⃣ Authentication
- Implement login/signup using JWT, Sessions, or OAuth 🔐

💬 Tap ❤️ for more!

#FullStack #WebDevelopment
5
💻 Programming Domains & Languages
What to learn. Why to learn. Where you fit.

🧠 Data Analytics
- Analyze data
- Build reports
- Find insights
Languages: SQL, Python, R
Tools: Excel, Power BI, Tableau
Jobs: Data Analyst, BI Analyst, Business Analyst

🤖 Data Science & AI
- Build models
- Predict outcomes
- Work with ML
Languages: Python, R
Libraries: pandas, numpy, scikit-learn, tensorflow
Jobs: Data Scientist, ML Engineer, AI Engineer

🌐 Web Development
- Build websites
- Create web apps
Frontend: HTML, CSS, JavaScript
Backend: JavaScript, Python, Java, PHP
Frameworks: React, Node.js, Django
Jobs: Frontend, Backend, Full Stack Developer

📱 Mobile App Development
- Build mobile apps
Android: Kotlin, Java
iOS: Swift
Cross-platform: Flutter, React Native
Jobs: Android, iOS, Mobile App Developer

🧩 Software Development
- Build systems
- Write core logic
Languages: Java, C++, C#, Python
Used in: Enterprise apps, Desktop software
Jobs: Software Engineer, Application Developer

🛡️ Cybersecurity
- Secure systems
- Test vulnerabilities
Languages: Python, C, C++, Bash
Tools: Kali Linux, Metasploit
Jobs: Security Analyst, Ethical Hacker

☁️ Cloud & DevOps
- Deploy apps
- Manage servers
Languages: Python, Bash, Go
Tools: AWS, Docker, Kubernetes
Jobs: DevOps Engineer, Cloud Engineer

🎮 Game Development
- Build games
- Design mechanics
Languages: C++, C#
Engines: Unity, Unreal Engine
Jobs: Game Developer, Game Designer

🎯 How to choose
- Like data → Data Analytics
- Like math → Data Science
- Like building websites → Web Development
- Like apps → Mobile Development
- Like system logic → Software Development
- Like security → Cybersecurity

Smart strategy
- Pick one domain
- Master one language
- Add tools slowly
- Build projects 😊

Double Tap ♥️ For More
8
𝗙𝘂𝗹𝗹𝘀𝘁𝗮𝗰𝗸 𝗗𝗲𝘃𝗲𝗹𝗼𝗽𝗺𝗲𝗻𝘁 𝗵𝗶𝗴𝗵-𝗱𝗲𝗺𝗮𝗻𝗱 𝘀𝗸𝗶𝗹𝗹 𝗜𝗻 𝟮𝟬𝟮𝟲😍

Join FREE Masterclass In Hyderabad/Pune/Noida Cities 

𝗛𝗶𝗴𝗵𝗹𝗶𝗴𝗵𝘁𝗲𝘀:- 
- 500+ Hiring Partners 
- 60+ Hiring Drives
- 100% Placement Assistance

𝗕𝗼𝗼𝗸 𝗮 𝗙𝗥𝗘𝗘 𝗱𝗲𝗺𝗼👇:-

🔹 Hyderabad :- https://pdlink.in/4cJUWtx

🔹 Pune :-  https://pdlink.in/3YA32zi

🔹 Noida :-  https://linkpd.in/NoidaFSD

Hurry Up 🏃‍♂️! Limited seats are available
1