Programming Resources | Python | Javascript | Artificial Intelligence Updates | Computer Science Courses | AI Books
54.3K subscribers
880 photos
1 video
4 files
333 links
Everything about programming for beginners
* Python programming
* Java programming
* App development
* Machine Learning
* Data Science

Managed by: @love_data
Download Telegram
Tools & Tech Every Developer Should Know βš’οΈπŸ‘¨πŸ»β€πŸ’»

❯ VS Code ➟ Lightweight, Powerful Code Editor
❯ Postman ➟ API Testing, Debugging
❯ Docker ➟ App Containerization
❯ Kubernetes ➟ Scaling & Orchestrating Containers
❯ Git ➟ Version Control, Team Collaboration
❯ GitHub/GitLab ➟ Hosting Code Repos, CI/CD
❯ Figma ➟ UI/UX Design, Prototyping
❯ Jira ➟ Agile Project Management
❯ Slack/Discord ➟ Team Communication
❯ Notion ➟ Docs, Notes, Knowledge Base
❯ Trello ➟ Task Management
❯ Zsh + Oh My Zsh ➟ Advanced Terminal Experience
❯ Linux Terminal ➟ DevOps, Shell Scripting
❯ Homebrew (macOS) ➟ Package Manager
❯ Anaconda ➟ Python & Data Science Environments
❯ Pandas ➟ Data Manipulation in Python
❯ NumPy ➟ Numerical Computation
❯ Jupyter Notebooks ➟ Interactive Python Coding
❯ Chrome DevTools ➟ Web Debugging
❯ Firebase ➟ Backend as a Service
❯ Heroku ➟ Easy App Deployment
❯ Netlify ➟ Deploy Frontend Sites
❯ Vercel ➟ Full-Stack Deployment for Next.js
❯ Nginx ➟ Web Server, Load Balancer
❯ MongoDB ➟ NoSQL Database
❯ PostgreSQL ➟ Advanced Relational Database
❯ Redis ➟ Caching & Fast Storage
❯ Elasticsearch ➟ Search & Analytics Engine
❯ Sentry ➟ Error Monitoring
❯ Jenkins ➟ Automate CI/CD Pipelines
❯ AWS/GCP/Azure ➟ Cloud Services & Deployment
❯ Swagger ➟ API Documentation
❯ SASS/SCSS ➟ CSS Preprocessors
❯ Tailwind CSS ➟ Utility-First CSS Framework

React ❀️ if you found this helpful

Coding Jobs: https://whatsapp.com/channel/0029VatL9a22kNFtPtLApJ2L
❀7
Complete roadmap to learn Python and Data Structures & Algorithms (DSA) in 2 months

### Week 1: Introduction to Python

Day 1-2: Basics of Python
- Python setup (installation and IDE setup)
- Basic syntax, variables, and data types
- Operators and expressions

Day 3-4: Control Structures
- Conditional statements (if, elif, else)
- Loops (for, while)

Day 5-6: Functions and Modules
- Function definitions, parameters, and return values
- Built-in functions and importing modules

Day 7: Practice Day
- Solve basic problems on platforms like HackerRank or LeetCode

### Week 2: Advanced Python Concepts

Day 8-9: Data Structures in Python
- Lists, tuples, sets, and dictionaries
- List comprehensions and generator expressions

Day 10-11: Strings and File I/O
- String manipulation and methods
- Reading from and writing to files

Day 12-13: Object-Oriented Programming (OOP)
- Classes and objects
- Inheritance, polymorphism, encapsulation

Day 14: Practice Day
- Solve intermediate problems on coding platforms

### Week 3: Introduction to Data Structures

Day 15-16: Arrays and Linked Lists
- Understanding arrays and their operations
- Singly and doubly linked lists

Day 17-18: Stacks and Queues
- Implementation and applications of stacks
- Implementation and applications of queues

Day 19-20: Recursion
- Basics of recursion and solving problems using recursion
- Recursive vs iterative solutions

Day 21: Practice Day
- Solve problems related to arrays, linked lists, stacks, and queues

### Week 4: Fundamental Algorithms

Day 22-23: Sorting Algorithms
- Bubble sort, selection sort, insertion sort
- Merge sort and quicksort

Day 24-25: Searching Algorithms
- Linear search and binary search
- Applications and complexity analysis

Day 26-27: Hashing
- Hash tables and hash functions
- Collision resolution techniques

Day 28: Practice Day
- Solve problems on sorting, searching, and hashing

### Week 5: Advanced Data Structures

Day 29-30: Trees
- Binary trees, binary search trees (BST)
- Tree traversals (in-order, pre-order, post-order)

Day 31-32: Heaps and Priority Queues
- Understanding heaps (min-heap, max-heap)
- Implementing priority queues using heaps

Day 33-34: Graphs
- Representation of graphs (adjacency matrix, adjacency list)
- Depth-first search (DFS) and breadth-first search (BFS)

Day 35: Practice Day
- Solve problems on trees, heaps, and graphs

### Week 6: Advanced Algorithms

Day 36-37: Dynamic Programming
- Introduction to dynamic programming
- Solving common DP problems (e.g., Fibonacci, knapsack)

Day 38-39: Greedy Algorithms
- Understanding greedy strategy
- Solving problems using greedy algorithms

Day 40-41: Graph Algorithms
- Dijkstra’s algorithm for shortest path
- Kruskal’s and Prim’s algorithms for minimum spanning tree

Day 42: Practice Day
- Solve problems on dynamic programming, greedy algorithms, and advanced graph algorithms

### Week 7: Problem Solving and Optimization

Day 43-44: Problem-Solving Techniques
- Backtracking, bit manipulation, and combinatorial problems

Day 45-46: Practice Competitive Programming
- Participate in contests on platforms like Codeforces or CodeChef

Day 47-48: Mock Interviews and Coding Challenges
- Simulate technical interviews
- Focus on time management and optimization

Day 49: Review and Revise
- Go through notes and previously solved problems
- Identify weak areas and work on them

### Week 8: Final Stretch and Project

Day 50-52: Build a Project
- Use your knowledge to build a substantial project in Python involving DSA concepts

Day 53-54: Code Review and Testing
- Refactor your project code
- Write tests for your project

Day 55-56: Final Practice
- Solve problems from previous contests or new challenging problems

Day 57-58: Documentation and Presentation
- Document your project and prepare a presentation or a detailed report

Day 59-60: Reflection and Future Plan
- Reflect on what you've learned
- Plan your next steps (advanced topics, more projects, etc.)

Best DSA RESOURCES: https://topmate.io/coding/886874

Credits: https://t.iss.one/free4unow_backup

ENJOY LEARNING πŸ‘πŸ‘
❀5
Python CheatSheet πŸ“š βœ…

1. Basic Syntax
- Print Statement: print("Hello, World!")
- Comments: # This is a comment

2. Data Types
- Integer: x = 10
- Float: y = 10.5
- String: name = "Alice"
- List: fruits = ["apple", "banana", "cherry"]
- Tuple: coordinates = (10, 20)
- Dictionary: person = {"name": "Alice", "age": 25}

3. Control Structures
- If Statement:

     if x > 10:
print("x is greater than 10")

- For Loop:

     for fruit in fruits:
print(fruit)

- While Loop:

     while x < 5:
x += 1

4. Functions
- Define Function:

     def greet(name):
return f"Hello, {name}!"

- Lambda Function: add = lambda a, b: a + b

5. Exception Handling
- Try-Except Block:

     try:
result = 10 / 0
except ZeroDivisionError:
print("Cannot divide by zero.")

6. File I/O
- Read File:

     with open('file.txt', 'r') as file:
content = file.read()

- Write File:

     with open('file.txt', 'w') as file:
file.write("Hello, World!")

7. List Comprehensions
- Basic Example: squared = [x**2 for x in range(10)]
- Conditional Comprehension: even_squares = [x**2 for x in range(10) if x % 2 == 0]

8. Modules and Packages
- Import Module: import math
- Import Specific Function: from math import sqrt

9. Common Libraries
- NumPy: import numpy as np
- Pandas: import pandas as pd
- Matplotlib: import matplotlib.pyplot as plt

10. Object-Oriented Programming
- Define Class:

      class Dog:
def __init__(self, name):
self.name = name
def bark(self):
return "Woof!"


11. Virtual Environments
- Create Environment: python -m venv myenv
- Activate Environment:
- Windows: myenv\Scripts\activate
- macOS/Linux: source myenv/bin/activate

12. Common Commands
- Run Script: python script.py
- Install Package: pip install package_name
- List Installed Packages: pip list

This Python checklist serves as a quick reference for essential syntax, functions, and best practices to enhance your coding efficiency!

Checklist for Data Analyst: https://dataanalytics.beehiiv.com/p/data

Here you can find essential Python Interview ResourcesπŸ‘‡
https://t.iss.one/DataSimplifier

Like for more resources like this πŸ‘ β™₯️

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
❀5