How to learn Programming in 2025
โค2๐1
Complete Python Roadmap ๐๐
1. Introduction to Python
- Definition
- Purpose
- Python Installation
- Interpreter vs Compiler
2. Basic Python Syntax
- Print Statement
- Variables and Data Types
- Input and Output
- Operators
3. Control Flow
- Conditional Statements (if, elif, else)
- Loops (for, while)
- Break and Continue Statements
4. Data Structures
- Lists
- Tuples
- Sets
- Dictionaries
5. Functions
- Function Definition
- Parameters and Return Values
- Lambda Functions
6. File Handling
- Reading from and Writing to Files
- Handling Exceptions
7. Modules and Packages
- Importing Modules
- Creating Packages
8. Object-Oriented Programming (OOP)
- Classes and Objects
- Inheritance
- Polymorphism
- Encapsulation
- Abstraction
9. Error Handling
- Try, Except Blocks
- Custom Exceptions
10. Advanced Data Structures
- List Comprehensions
- Generators
- Collections Module
11. Decorators and Generators
- Function Decorators
- Generator Functions
12. Working with APIs
- Making HTTP Requests
- JSON Handling
13. Database Interaction with Python
- Connecting to Databases
- CRUD Operations
14. Web Development with Flask/Django
- Flask/Django Setup
- Routing and Templates
15. Asynchronous Programming
- Async/Await
- Asyncio Library
16. Testing in Python
- Unit Testing
- Testing Frameworks (e.g., pytest)
17. Pythonic Code
- PEP 8 Style Guide
- Code Readability
18. Version Control (Git)
- Basic Commands
- Collaborative Development
19. Data Science Libraries
- NumPy
- Pandas
- Matplotlib
20. Machine Learning Basics
- Scikit-Learn
- Model Training and Evaluation
21. Web Scraping
- BeautifulSoup
- Scrapy
22. RESTful API Development
- Flask/Django Rest Framework
23. CI/CD Basics
- Continuous Integration
- Continuous Deployment
24. Deployment
- Deploying Python Applications
- Hosting Platforms (e.g., Heroku)
25. Security Best Practices
- Input Validation
- Handling Sensitive Data
26. Code Documentation
- Docstrings
- Generating Documentation
27. Community and Collaboration
- Open Source Contributions
- Forums and Conferences
Resources to Learn Python:
1. Free Course
- https://www.freecodecamp.org/learn/data-analysis-with-python/
2. Projects
- t.iss.one/pythonfreebootcamp/177
- t.iss.one/pythonspecialist/90
3. Books & Notes
- https://t.iss.one/dsabooks/99
- https://t.iss.one/dsabooks/101
4. Python Interview Preparation
- https://t.iss.one/PythonInterviews
- t.iss.one/DataAnalystInterview/63
Join @free4unow_backup for more Python resources.
Like this post if you want more content like this ๐โค๏ธ
ENJOY LEARNING ๐๐
1. Introduction to Python
- Definition
- Purpose
- Python Installation
- Interpreter vs Compiler
2. Basic Python Syntax
- Print Statement
- Variables and Data Types
- Input and Output
- Operators
3. Control Flow
- Conditional Statements (if, elif, else)
- Loops (for, while)
- Break and Continue Statements
4. Data Structures
- Lists
- Tuples
- Sets
- Dictionaries
5. Functions
- Function Definition
- Parameters and Return Values
- Lambda Functions
6. File Handling
- Reading from and Writing to Files
- Handling Exceptions
7. Modules and Packages
- Importing Modules
- Creating Packages
8. Object-Oriented Programming (OOP)
- Classes and Objects
- Inheritance
- Polymorphism
- Encapsulation
- Abstraction
9. Error Handling
- Try, Except Blocks
- Custom Exceptions
10. Advanced Data Structures
- List Comprehensions
- Generators
- Collections Module
11. Decorators and Generators
- Function Decorators
- Generator Functions
12. Working with APIs
- Making HTTP Requests
- JSON Handling
13. Database Interaction with Python
- Connecting to Databases
- CRUD Operations
14. Web Development with Flask/Django
- Flask/Django Setup
- Routing and Templates
15. Asynchronous Programming
- Async/Await
- Asyncio Library
16. Testing in Python
- Unit Testing
- Testing Frameworks (e.g., pytest)
17. Pythonic Code
- PEP 8 Style Guide
- Code Readability
18. Version Control (Git)
- Basic Commands
- Collaborative Development
19. Data Science Libraries
- NumPy
- Pandas
- Matplotlib
20. Machine Learning Basics
- Scikit-Learn
- Model Training and Evaluation
21. Web Scraping
- BeautifulSoup
- Scrapy
22. RESTful API Development
- Flask/Django Rest Framework
23. CI/CD Basics
- Continuous Integration
- Continuous Deployment
24. Deployment
- Deploying Python Applications
- Hosting Platforms (e.g., Heroku)
25. Security Best Practices
- Input Validation
- Handling Sensitive Data
26. Code Documentation
- Docstrings
- Generating Documentation
27. Community and Collaboration
- Open Source Contributions
- Forums and Conferences
Resources to Learn Python:
1. Free Course
- https://www.freecodecamp.org/learn/data-analysis-with-python/
2. Projects
- t.iss.one/pythonfreebootcamp/177
- t.iss.one/pythonspecialist/90
3. Books & Notes
- https://t.iss.one/dsabooks/99
- https://t.iss.one/dsabooks/101
4. Python Interview Preparation
- https://t.iss.one/PythonInterviews
- t.iss.one/DataAnalystInterview/63
Join @free4unow_backup for more Python resources.
Like this post if you want more content like this ๐โค๏ธ
ENJOY LEARNING ๐๐
โค8
Theoretical Questions for Coding Interviews on Basic Data Structures
1. What is a Data Structure?
A data structure is a way of organizing and storing data so that it can be accessed and modified efficiently. Common data structures include arrays, linked lists, stacks, queues, and trees.
2. What is an Array?
An array is a collection of elements, each identified by an index. It has a fixed size and stores elements of the same type in contiguous memory locations.
3. What is a Linked List?
A linked list is a linear data structure where elements (nodes) are stored non-contiguously. Each node contains a value and a reference (or link) to the next node. Unlike arrays, linked lists can grow dynamically.
4. What is a Stack?
A stack is a linear data structure that follows the Last In, First Out (LIFO) principle. The most recently added element is the first one to be removed. Common operations include push (add an element) and pop (remove an element).
5. What is a Queue?
A queue is a linear data structure that follows the First In, First Out (FIFO) principle. The first element added is the first one to be removed. Common operations include enqueue (add an element) and dequeue (remove an element).
6. What is a Binary Tree?
A binary tree is a hierarchical data structure where each node has at most two children, usually referred to as the left and right child. It is used for efficient searching and sorting.
7. What is the difference between an array and a linked list?
Array: Fixed size, elements stored in contiguous memory.
Linked List: Dynamic size, elements stored non-contiguously, each node points to the next.
8. What is the time complexity for accessing an element in an array vs. a linked list?
Array: O(1) for direct access by index.
Linked List: O(n) for access, as you must traverse the list from the start to find an element.
9. What is the time complexity for inserting or deleting an element in an array vs. a linked list?
Array:
Insertion/Deletion at the end: O(1).
Insertion/Deletion at the beginning or middle: O(n) because elements must be shifted.
Linked List:
Insertion/Deletion at the beginning: O(1).
Insertion/Deletion in the middle or end: O(n), as you need to traverse the list.
10. What is a HashMap (or Dictionary)?
A HashMap is a data structure that stores key-value pairs. It allows efficient lookups, insertions, and deletions using a hash function to map keys to values. Average time complexity for these operations is O(1).
Coding interview: https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
1. What is a Data Structure?
A data structure is a way of organizing and storing data so that it can be accessed and modified efficiently. Common data structures include arrays, linked lists, stacks, queues, and trees.
2. What is an Array?
An array is a collection of elements, each identified by an index. It has a fixed size and stores elements of the same type in contiguous memory locations.
3. What is a Linked List?
A linked list is a linear data structure where elements (nodes) are stored non-contiguously. Each node contains a value and a reference (or link) to the next node. Unlike arrays, linked lists can grow dynamically.
4. What is a Stack?
A stack is a linear data structure that follows the Last In, First Out (LIFO) principle. The most recently added element is the first one to be removed. Common operations include push (add an element) and pop (remove an element).
5. What is a Queue?
A queue is a linear data structure that follows the First In, First Out (FIFO) principle. The first element added is the first one to be removed. Common operations include enqueue (add an element) and dequeue (remove an element).
6. What is a Binary Tree?
A binary tree is a hierarchical data structure where each node has at most two children, usually referred to as the left and right child. It is used for efficient searching and sorting.
7. What is the difference between an array and a linked list?
Array: Fixed size, elements stored in contiguous memory.
Linked List: Dynamic size, elements stored non-contiguously, each node points to the next.
8. What is the time complexity for accessing an element in an array vs. a linked list?
Array: O(1) for direct access by index.
Linked List: O(n) for access, as you must traverse the list from the start to find an element.
9. What is the time complexity for inserting or deleting an element in an array vs. a linked list?
Array:
Insertion/Deletion at the end: O(1).
Insertion/Deletion at the beginning or middle: O(n) because elements must be shifted.
Linked List:
Insertion/Deletion at the beginning: O(1).
Insertion/Deletion in the middle or end: O(n), as you need to traverse the list.
10. What is a HashMap (or Dictionary)?
A HashMap is a data structure that stores key-value pairs. It allows efficient lookups, insertions, and deletions using a hash function to map keys to values. Average time complexity for these operations is O(1).
Coding interview: https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
โค4
Essential Programming Languages to Learn Data Science ๐๐
1. Python: Python is one of the most popular programming languages for data science due to its simplicity, versatility, and extensive library support (such as NumPy, Pandas, and Scikit-learn).
2. R: R is another popular language for data science, particularly in academia and research settings. It has powerful statistical analysis capabilities and a wide range of packages for data manipulation and visualization.
3. SQL: SQL (Structured Query Language) is essential for working with databases, which are a critical component of data science projects. Knowledge of SQL is necessary for querying and manipulating data stored in relational databases.
4. Java: Java is a versatile language that is widely used in enterprise applications and big data processing frameworks like Apache Hadoop and Apache Spark. Knowledge of Java can be beneficial for working with large-scale data processing systems.
5. Scala: Scala is a functional programming language that is often used in conjunction with Apache Spark for distributed data processing. Knowledge of Scala can be valuable for building high-performance data processing applications.
6. Julia: Julia is a high-performance language specifically designed for scientific computing and data analysis. It is gaining popularity in the data science community due to its speed and ease of use for numerical computations.
7. MATLAB: MATLAB is a proprietary programming language commonly used in engineering and scientific research for data analysis, visualization, and modeling. It is particularly useful for signal processing and image analysis tasks.
Free Resources to master data analytics concepts ๐๐
Data Analysis with R
Intro to Data Science
Practical Python Programming
SQL for Data Analysis
Java Essential Concepts
Machine Learning with Python
Data Science Project Ideas
Learning SQL FREE Book
Join @free4unow_backup for more free resources.
ENJOY LEARNING๐๐
1. Python: Python is one of the most popular programming languages for data science due to its simplicity, versatility, and extensive library support (such as NumPy, Pandas, and Scikit-learn).
2. R: R is another popular language for data science, particularly in academia and research settings. It has powerful statistical analysis capabilities and a wide range of packages for data manipulation and visualization.
3. SQL: SQL (Structured Query Language) is essential for working with databases, which are a critical component of data science projects. Knowledge of SQL is necessary for querying and manipulating data stored in relational databases.
4. Java: Java is a versatile language that is widely used in enterprise applications and big data processing frameworks like Apache Hadoop and Apache Spark. Knowledge of Java can be beneficial for working with large-scale data processing systems.
5. Scala: Scala is a functional programming language that is often used in conjunction with Apache Spark for distributed data processing. Knowledge of Scala can be valuable for building high-performance data processing applications.
6. Julia: Julia is a high-performance language specifically designed for scientific computing and data analysis. It is gaining popularity in the data science community due to its speed and ease of use for numerical computations.
7. MATLAB: MATLAB is a proprietary programming language commonly used in engineering and scientific research for data analysis, visualization, and modeling. It is particularly useful for signal processing and image analysis tasks.
Free Resources to master data analytics concepts ๐๐
Data Analysis with R
Intro to Data Science
Practical Python Programming
SQL for Data Analysis
Java Essential Concepts
Machine Learning with Python
Data Science Project Ideas
Learning SQL FREE Book
Join @free4unow_backup for more free resources.
ENJOY LEARNING๐๐
โค1
### Learn GitHub Easily ๐คฉ
Here's all you need to get started ๐
1. Introduction to GitHub
- What is GitHub?
- Differences between Git and GitHub
- Creating a GitHub account
2. Creating a Repository
- Setting up a new repository
- Understanding repository settings (public vs. private)
- Adding a README file
3. Cloning a Repository
- Cloning repositories to your local machine
- Understanding SSH vs. HTTPS cloning
4. Managing Repositories
- Navigating the GitHub interface
- Viewing and editing files
- Understanding branches in GitHub
5. Committing Changes
- Making changes locally and pushing to GitHub
- Committing changes with meaningful messages
- Synchronizing changes with
6. Branching and Merging
- Creating branches on GitHub
- Comparing branches
- Merging branches through pull requests
7. Pull Requests (PRs)
- Creating a pull request
- Reviewing pull requests
- Merging pull requests and resolving conflicts
8. Issues and Project Management
- Creating and managing issues
- Using labels, milestones, and assignees
- Introduction to GitHub Projects for task management
9. Collaboration Features
- Using GitHub Discussions
- Code reviews and comments
- Mentioning team members and using notifications
10. GitHub Actions
- Introduction to CI/CD with GitHub Actions
- Creating simple workflows
- Using actions from the GitHub Marketplace
11. GitHub Pages
- Setting up GitHub Pages for static sites
- Using Jekyll for site generation
12. Managing Releases
- Creating and managing releases
- Understanding versioning (tags)
13. Security Features
- Setting up branch protections
- Enabling two-factor authentication (2FA)
- Managing collaborator permissions
14. Exploring GitHub API
- Overview of GitHub API
- Making API requests for repositories and issues
15. GitHub CLI
- Introduction to GitHub Command Line Interface
- Common commands and usage
16. Best Practices
- Writing effective commit messages
- Structuring your repositories
- Managing large projects and dependencies
17. Resources for Continued Learning
- GitHub documentation and guides
- Online tutorials and courses
- Community forums and events
Here's all you need to get started ๐
1. Introduction to GitHub
- What is GitHub?
- Differences between Git and GitHub
- Creating a GitHub account
2. Creating a Repository
- Setting up a new repository
- Understanding repository settings (public vs. private)
- Adding a README file
3. Cloning a Repository
- Cloning repositories to your local machine
- Understanding SSH vs. HTTPS cloning
4. Managing Repositories
- Navigating the GitHub interface
- Viewing and editing files
- Understanding branches in GitHub
5. Committing Changes
- Making changes locally and pushing to GitHub
- Committing changes with meaningful messages
- Synchronizing changes with
git pull
and git push
6. Branching and Merging
- Creating branches on GitHub
- Comparing branches
- Merging branches through pull requests
7. Pull Requests (PRs)
- Creating a pull request
- Reviewing pull requests
- Merging pull requests and resolving conflicts
8. Issues and Project Management
- Creating and managing issues
- Using labels, milestones, and assignees
- Introduction to GitHub Projects for task management
9. Collaboration Features
- Using GitHub Discussions
- Code reviews and comments
- Mentioning team members and using notifications
10. GitHub Actions
- Introduction to CI/CD with GitHub Actions
- Creating simple workflows
- Using actions from the GitHub Marketplace
11. GitHub Pages
- Setting up GitHub Pages for static sites
- Using Jekyll for site generation
12. Managing Releases
- Creating and managing releases
- Understanding versioning (tags)
13. Security Features
- Setting up branch protections
- Enabling two-factor authentication (2FA)
- Managing collaborator permissions
14. Exploring GitHub API
- Overview of GitHub API
- Making API requests for repositories and issues
15. GitHub CLI
- Introduction to GitHub Command Line Interface
- Common commands and usage
16. Best Practices
- Writing effective commit messages
- Structuring your repositories
- Managing large projects and dependencies
17. Resources for Continued Learning
- GitHub documentation and guides
- Online tutorials and courses
- Community forums and events
โค8
15 Best Project Ideas for Backend Development : ๐ ๏ธ๐
๐ Beginner Level :
1. ๐ฆ RESTful API for a To-Do App
2. ๐ Contact Form Backend
3. ๐๏ธ File Upload Service
4. ๐ฌ Email Subscription Service
5. ๐งพ Notes App Backend
๐ Intermediate Level :
6. ๐ E-commerce Backend with Cart & Orders
7. ๐ Authentication System (JWT/OAuth)
8. ๐งโ๐คโ๐ง User Management API
9. ๐งพ Invoice Generator API
10. ๐ง Blog CMS Backend
๐ Advanced Level :
11. ๐ง AI Chatbot Backend Integration
12. ๐ Real-Time Stock Tracker using WebSockets
13. ๐ง Music Streaming Server
14. ๐ฌ Real-Time Chat Server
15. โ๏ธ Microservices Architecture for Large Apps
Here you can find more Coding Project Ideas: https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
Web Development Jobs: https://whatsapp.com/channel/0029Vb1raTiDjiOias5ARu2p
JavaScript Resources: https://whatsapp.com/channel/0029VavR9OxLtOjJTXrZNi32
ENJOY LEARNING ๐๐
๐ Beginner Level :
1. ๐ฆ RESTful API for a To-Do App
2. ๐ Contact Form Backend
3. ๐๏ธ File Upload Service
4. ๐ฌ Email Subscription Service
5. ๐งพ Notes App Backend
๐ Intermediate Level :
6. ๐ E-commerce Backend with Cart & Orders
7. ๐ Authentication System (JWT/OAuth)
8. ๐งโ๐คโ๐ง User Management API
9. ๐งพ Invoice Generator API
10. ๐ง Blog CMS Backend
๐ Advanced Level :
11. ๐ง AI Chatbot Backend Integration
12. ๐ Real-Time Stock Tracker using WebSockets
13. ๐ง Music Streaming Server
14. ๐ฌ Real-Time Chat Server
15. โ๏ธ Microservices Architecture for Large Apps
Here you can find more Coding Project Ideas: https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
Web Development Jobs: https://whatsapp.com/channel/0029Vb1raTiDjiOias5ARu2p
JavaScript Resources: https://whatsapp.com/channel/0029VavR9OxLtOjJTXrZNi32
ENJOY LEARNING ๐๐
โค4
How to master Python from scratch๐
1. Setup and Basics ๐
- Install Python ๐ฅ๏ธ: Download Python and set it up.
- Hello, World! ๐: Write your first Hello World program.
2. Basic Syntax ๐
- Variables and Data Types ๐: Learn about strings, integers, floats, and booleans.
- Control Structures ๐: Understand if-else statements, for loops, and while loops.
- Functions ๐ ๏ธ: Write reusable blocks of code.
3. Data Structures ๐
- Lists ๐: Manage collections of items.
- Dictionaries ๐: Store key-value pairs.
- Tuples ๐ฆ: Work with immutable sequences.
- Sets ๐ข: Handle collections of unique items.
4. Modules and Packages ๐ฆ
- Standard Library ๐: Explore built-in modules.
- Third-Party Packages ๐: Install and use packages with pip.
5. File Handling ๐
- Read and Write Files ๐
- CSV and JSON ๐
6. Object-Oriented Programming ๐งฉ
- Classes and Objects ๐๏ธ
- Inheritance and Polymorphism ๐จโ๐ฉโ๐ง
7. Web Development ๐
- Flask ๐ผ: Start with a micro web framework.
- Django ๐ฆ: Dive into a full-fledged web framework.
8. Data Science and Machine Learning ๐ง
- NumPy ๐: Numerical operations.
- Pandas ๐ผ: Data manipulation and analysis.
- Matplotlib ๐ and Seaborn ๐: Data visualization.
- Scikit-learn ๐ค: Machine learning.
9. Automation and Scripting ๐ค
- Automate Tasks ๐ ๏ธ: Use Python to automate repetitive tasks.
- APIs ๐: Interact with web services.
10. Testing and Debugging ๐
- Unit Testing ๐งช: Write tests for your code.
- Debugging ๐: Learn to debug efficiently.
11. Advanced Topics ๐
- Concurrency and Parallelism ๐
- Decorators ๐ and Generators โ๏ธ
- Web Scraping ๐ธ๏ธ: Extract data from websites using BeautifulSoup and Scrapy.
12. Practice Projects ๐ก
- Calculator ๐งฎ
- To-Do List App ๐
- Weather App โ๏ธ
- Personal Blog ๐
13. Community and Collaboration ๐ค
- Contribute to Open Source ๐
- Join Coding Communities ๐ฌ
- Participate in Hackathons ๐
14. Keep Learning and Improving ๐
- Read Books ๐: Like "Automate the Boring Stuff with Python".
- Watch Tutorials ๐ฅ: Follow video courses and tutorials.
- Solve Challenges ๐งฉ: On platforms like LeetCode, HackerRank, and CodeWars.
15. Teach and Share Knowledge ๐ข
- Write Blogs โ๏ธ
- Create Video Tutorials ๐น
- Mentor Others ๐จโ๐ซ
I have curated the best interview resources to crack Python Interviews ๐๐
https://topmate.io/coding/898340
Hope you'll like it
Like this post if you need more resources like this ๐โค๏ธ
1. Setup and Basics ๐
- Install Python ๐ฅ๏ธ: Download Python and set it up.
- Hello, World! ๐: Write your first Hello World program.
2. Basic Syntax ๐
- Variables and Data Types ๐: Learn about strings, integers, floats, and booleans.
- Control Structures ๐: Understand if-else statements, for loops, and while loops.
- Functions ๐ ๏ธ: Write reusable blocks of code.
3. Data Structures ๐
- Lists ๐: Manage collections of items.
- Dictionaries ๐: Store key-value pairs.
- Tuples ๐ฆ: Work with immutable sequences.
- Sets ๐ข: Handle collections of unique items.
4. Modules and Packages ๐ฆ
- Standard Library ๐: Explore built-in modules.
- Third-Party Packages ๐: Install and use packages with pip.
5. File Handling ๐
- Read and Write Files ๐
- CSV and JSON ๐
6. Object-Oriented Programming ๐งฉ
- Classes and Objects ๐๏ธ
- Inheritance and Polymorphism ๐จโ๐ฉโ๐ง
7. Web Development ๐
- Flask ๐ผ: Start with a micro web framework.
- Django ๐ฆ: Dive into a full-fledged web framework.
8. Data Science and Machine Learning ๐ง
- NumPy ๐: Numerical operations.
- Pandas ๐ผ: Data manipulation and analysis.
- Matplotlib ๐ and Seaborn ๐: Data visualization.
- Scikit-learn ๐ค: Machine learning.
9. Automation and Scripting ๐ค
- Automate Tasks ๐ ๏ธ: Use Python to automate repetitive tasks.
- APIs ๐: Interact with web services.
10. Testing and Debugging ๐
- Unit Testing ๐งช: Write tests for your code.
- Debugging ๐: Learn to debug efficiently.
11. Advanced Topics ๐
- Concurrency and Parallelism ๐
- Decorators ๐ and Generators โ๏ธ
- Web Scraping ๐ธ๏ธ: Extract data from websites using BeautifulSoup and Scrapy.
12. Practice Projects ๐ก
- Calculator ๐งฎ
- To-Do List App ๐
- Weather App โ๏ธ
- Personal Blog ๐
13. Community and Collaboration ๐ค
- Contribute to Open Source ๐
- Join Coding Communities ๐ฌ
- Participate in Hackathons ๐
14. Keep Learning and Improving ๐
- Read Books ๐: Like "Automate the Boring Stuff with Python".
- Watch Tutorials ๐ฅ: Follow video courses and tutorials.
- Solve Challenges ๐งฉ: On platforms like LeetCode, HackerRank, and CodeWars.
15. Teach and Share Knowledge ๐ข
- Write Blogs โ๏ธ
- Create Video Tutorials ๐น
- Mentor Others ๐จโ๐ซ
I have curated the best interview resources to crack Python Interviews ๐๐
https://topmate.io/coding/898340
Hope you'll like it
Like this post if you need more resources like this ๐โค๏ธ
โค2
Hi guys,
Now you can directly find job opportunities on WhatsApp. Here is the list of top job related channels on WhatsApp ๐
Latest Jobs & Internship Opportunities: https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
Python & AI Jobs: https://whatsapp.com/channel/0029VaxtmHsLikgJ2VtGbu1R
Software Engineer Jobs: https://whatsapp.com/channel/0029VatL9a22kNFtPtLApJ2L
Data Science Jobs: https://whatsapp.com/channel/0029VaxTMmQADTOA746w7U2P
Data Analyst Jobs: https://whatsapp.com/channel/0029Vaxjq5a4dTnKNrdeiZ0J
Web Developer Jobs: https://whatsapp.com/channel/0029Vb1raTiDjiOias5ARu2p
Remote Jobs: https://whatsapp.com/channel/0029Vb1RrFuC1Fu3E0aiac2E
Google Jobs: https://whatsapp.com/channel/0029VaxngnVInlqV6xJhDs3m
Hope it helps :)
Now you can directly find job opportunities on WhatsApp. Here is the list of top job related channels on WhatsApp ๐
Latest Jobs & Internship Opportunities: https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
Python & AI Jobs: https://whatsapp.com/channel/0029VaxtmHsLikgJ2VtGbu1R
Software Engineer Jobs: https://whatsapp.com/channel/0029VatL9a22kNFtPtLApJ2L
Data Science Jobs: https://whatsapp.com/channel/0029VaxTMmQADTOA746w7U2P
Data Analyst Jobs: https://whatsapp.com/channel/0029Vaxjq5a4dTnKNrdeiZ0J
Web Developer Jobs: https://whatsapp.com/channel/0029Vb1raTiDjiOias5ARu2p
Remote Jobs: https://whatsapp.com/channel/0029Vb1RrFuC1Fu3E0aiac2E
Google Jobs: https://whatsapp.com/channel/0029VaxngnVInlqV6xJhDs3m
Hope it helps :)
โค4
Tools & Tech Every Developer Should Know โ๏ธ๐จ๐ปโ๐ป
โฏ VS Code โ Lightweight, Powerful Code Editor
โฏ Postman โ API Testing, Debugging
โฏ Docker โ App Containerization
โฏ Kubernetes โ Scaling & Orchestrating Containers
โฏ Git โ Version Control, Team Collaboration
โฏ GitHub/GitLab โ Hosting Code Repos, CI/CD
โฏ Figma โ UI/UX Design, Prototyping
โฏ Jira โ Agile Project Management
โฏ Slack/Discord โ Team Communication
โฏ Notion โ Docs, Notes, Knowledge Base
โฏ Trello โ Task Management
โฏ Zsh + Oh My Zsh โ Advanced Terminal Experience
โฏ Linux Terminal โ DevOps, Shell Scripting
โฏ Homebrew (macOS) โ Package Manager
โฏ Anaconda โ Python & Data Science Environments
โฏ Pandas โ Data Manipulation in Python
โฏ NumPy โ Numerical Computation
โฏ Jupyter Notebooks โ Interactive Python Coding
โฏ Chrome DevTools โ Web Debugging
โฏ Firebase โ Backend as a Service
โฏ Heroku โ Easy App Deployment
โฏ Netlify โ Deploy Frontend Sites
โฏ Vercel โ Full-Stack Deployment for Next.js
โฏ Nginx โ Web Server, Load Balancer
โฏ MongoDB โ NoSQL Database
โฏ PostgreSQL โ Advanced Relational Database
โฏ Redis โ Caching & Fast Storage
โฏ Elasticsearch โ Search & Analytics Engine
โฏ Sentry โ Error Monitoring
โฏ Jenkins โ Automate CI/CD Pipelines
โฏ AWS/GCP/Azure โ Cloud Services & Deployment
โฏ Swagger โ API Documentation
โฏ SASS/SCSS โ CSS Preprocessors
โฏ Tailwind CSS โ Utility-First CSS Framework
React โค๏ธ if you found this helpful
Coding Jobs: https://whatsapp.com/channel/0029VatL9a22kNFtPtLApJ2L
โฏ VS Code โ Lightweight, Powerful Code Editor
โฏ Postman โ API Testing, Debugging
โฏ Docker โ App Containerization
โฏ Kubernetes โ Scaling & Orchestrating Containers
โฏ Git โ Version Control, Team Collaboration
โฏ GitHub/GitLab โ Hosting Code Repos, CI/CD
โฏ Figma โ UI/UX Design, Prototyping
โฏ Jira โ Agile Project Management
โฏ Slack/Discord โ Team Communication
โฏ Notion โ Docs, Notes, Knowledge Base
โฏ Trello โ Task Management
โฏ Zsh + Oh My Zsh โ Advanced Terminal Experience
โฏ Linux Terminal โ DevOps, Shell Scripting
โฏ Homebrew (macOS) โ Package Manager
โฏ Anaconda โ Python & Data Science Environments
โฏ Pandas โ Data Manipulation in Python
โฏ NumPy โ Numerical Computation
โฏ Jupyter Notebooks โ Interactive Python Coding
โฏ Chrome DevTools โ Web Debugging
โฏ Firebase โ Backend as a Service
โฏ Heroku โ Easy App Deployment
โฏ Netlify โ Deploy Frontend Sites
โฏ Vercel โ Full-Stack Deployment for Next.js
โฏ Nginx โ Web Server, Load Balancer
โฏ MongoDB โ NoSQL Database
โฏ PostgreSQL โ Advanced Relational Database
โฏ Redis โ Caching & Fast Storage
โฏ Elasticsearch โ Search & Analytics Engine
โฏ Sentry โ Error Monitoring
โฏ Jenkins โ Automate CI/CD Pipelines
โฏ AWS/GCP/Azure โ Cloud Services & Deployment
โฏ Swagger โ API Documentation
โฏ SASS/SCSS โ CSS Preprocessors
โฏ Tailwind CSS โ Utility-First CSS Framework
React โค๏ธ if you found this helpful
Coding Jobs: https://whatsapp.com/channel/0029VatL9a22kNFtPtLApJ2L
โค7
Python Functions ๐
โค2