๐๐ฅ๐๐ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ ๐๐ฎ๐ฟ๐ป๐ถ๐๐ฎ๐น ๐ฏ๐ ๐๐๐ ๐๐จ๐ฉ๐๐
Prove your skills in an online hackathon, clear tech interviews, and get hired faster
Highlightes:-
- 21+ Hiring Companies & 100+ Open Positions to Grab
- Get hired for roles in AI, Full Stack, & more
Experience the biggest online job fair with Career Carnival by HCL GUVI
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/4bQP5Ee
Hurry Up๐โโ๏ธ.....Limited Slots Available
Prove your skills in an online hackathon, clear tech interviews, and get hired faster
Highlightes:-
- 21+ Hiring Companies & 100+ Open Positions to Grab
- Get hired for roles in AI, Full Stack, & more
Experience the biggest online job fair with Career Carnival by HCL GUVI
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/4bQP5Ee
Hurry Up๐โโ๏ธ.....Limited Slots Available
Complete roadmap to learn Python and Data Structures & Algorithms (DSA) in 2 months
### Week 1: Introduction to Python
Day 1-2: Basics of Python
- Python setup (installation and IDE setup)
- Basic syntax, variables, and data types
- Operators and expressions
Day 3-4: Control Structures
- Conditional statements (if, elif, else)
- Loops (for, while)
Day 5-6: Functions and Modules
- Function definitions, parameters, and return values
- Built-in functions and importing modules
Day 7: Practice Day
- Solve basic problems on platforms like HackerRank or LeetCode
### Week 2: Advanced Python Concepts
Day 8-9: Data Structures in Python
- Lists, tuples, sets, and dictionaries
- List comprehensions and generator expressions
Day 10-11: Strings and File I/O
- String manipulation and methods
- Reading from and writing to files
Day 12-13: Object-Oriented Programming (OOP)
- Classes and objects
- Inheritance, polymorphism, encapsulation
Day 14: Practice Day
- Solve intermediate problems on coding platforms
### Week 3: Introduction to Data Structures
Day 15-16: Arrays and Linked Lists
- Understanding arrays and their operations
- Singly and doubly linked lists
Day 17-18: Stacks and Queues
- Implementation and applications of stacks
- Implementation and applications of queues
Day 19-20: Recursion
- Basics of recursion and solving problems using recursion
- Recursive vs iterative solutions
Day 21: Practice Day
- Solve problems related to arrays, linked lists, stacks, and queues
### Week 4: Fundamental Algorithms
Day 22-23: Sorting Algorithms
- Bubble sort, selection sort, insertion sort
- Merge sort and quicksort
Day 24-25: Searching Algorithms
- Linear search and binary search
- Applications and complexity analysis
Day 26-27: Hashing
- Hash tables and hash functions
- Collision resolution techniques
Day 28: Practice Day
- Solve problems on sorting, searching, and hashing
### Week 5: Advanced Data Structures
Day 29-30: Trees
- Binary trees, binary search trees (BST)
- Tree traversals (in-order, pre-order, post-order)
Day 31-32: Heaps and Priority Queues
- Understanding heaps (min-heap, max-heap)
- Implementing priority queues using heaps
Day 33-34: Graphs
- Representation of graphs (adjacency matrix, adjacency list)
- Depth-first search (DFS) and breadth-first search (BFS)
Day 35: Practice Day
- Solve problems on trees, heaps, and graphs
### Week 6: Advanced Algorithms
Day 36-37: Dynamic Programming
- Introduction to dynamic programming
- Solving common DP problems (e.g., Fibonacci, knapsack)
Day 38-39: Greedy Algorithms
- Understanding greedy strategy
- Solving problems using greedy algorithms
Day 40-41: Graph Algorithms
- Dijkstraโs algorithm for shortest path
- Kruskalโs and Primโs algorithms for minimum spanning tree
Day 42: Practice Day
- Solve problems on dynamic programming, greedy algorithms, and advanced graph algorithms
### Week 7: Problem Solving and Optimization
Day 43-44: Problem-Solving Techniques
- Backtracking, bit manipulation, and combinatorial problems
Day 45-46: Practice Competitive Programming
- Participate in contests on platforms like Codeforces or CodeChef
Day 47-48: Mock Interviews and Coding Challenges
- Simulate technical interviews
- Focus on time management and optimization
Day 49: Review and Revise
- Go through notes and previously solved problems
- Identify weak areas and work on them
### Week 8: Final Stretch and Project
Day 50-52: Build a Project
- Use your knowledge to build a substantial project in Python involving DSA concepts
Day 53-54: Code Review and Testing
- Refactor your project code
- Write tests for your project
Day 55-56: Final Practice
- Solve problems from previous contests or new challenging problems
Day 57-58: Documentation and Presentation
- Document your project and prepare a presentation or a detailed report
Day 59-60: Reflection and Future Plan
- Reflect on what you've learned
- Plan your next steps (advanced topics, more projects, etc.)
Best DSA RESOURCES: https://topmate.io/coding/886874
Credits: https://t.iss.one/free4unow_backup
ENJOY LEARNING ๐๐
### Week 1: Introduction to Python
Day 1-2: Basics of Python
- Python setup (installation and IDE setup)
- Basic syntax, variables, and data types
- Operators and expressions
Day 3-4: Control Structures
- Conditional statements (if, elif, else)
- Loops (for, while)
Day 5-6: Functions and Modules
- Function definitions, parameters, and return values
- Built-in functions and importing modules
Day 7: Practice Day
- Solve basic problems on platforms like HackerRank or LeetCode
### Week 2: Advanced Python Concepts
Day 8-9: Data Structures in Python
- Lists, tuples, sets, and dictionaries
- List comprehensions and generator expressions
Day 10-11: Strings and File I/O
- String manipulation and methods
- Reading from and writing to files
Day 12-13: Object-Oriented Programming (OOP)
- Classes and objects
- Inheritance, polymorphism, encapsulation
Day 14: Practice Day
- Solve intermediate problems on coding platforms
### Week 3: Introduction to Data Structures
Day 15-16: Arrays and Linked Lists
- Understanding arrays and their operations
- Singly and doubly linked lists
Day 17-18: Stacks and Queues
- Implementation and applications of stacks
- Implementation and applications of queues
Day 19-20: Recursion
- Basics of recursion and solving problems using recursion
- Recursive vs iterative solutions
Day 21: Practice Day
- Solve problems related to arrays, linked lists, stacks, and queues
### Week 4: Fundamental Algorithms
Day 22-23: Sorting Algorithms
- Bubble sort, selection sort, insertion sort
- Merge sort and quicksort
Day 24-25: Searching Algorithms
- Linear search and binary search
- Applications and complexity analysis
Day 26-27: Hashing
- Hash tables and hash functions
- Collision resolution techniques
Day 28: Practice Day
- Solve problems on sorting, searching, and hashing
### Week 5: Advanced Data Structures
Day 29-30: Trees
- Binary trees, binary search trees (BST)
- Tree traversals (in-order, pre-order, post-order)
Day 31-32: Heaps and Priority Queues
- Understanding heaps (min-heap, max-heap)
- Implementing priority queues using heaps
Day 33-34: Graphs
- Representation of graphs (adjacency matrix, adjacency list)
- Depth-first search (DFS) and breadth-first search (BFS)
Day 35: Practice Day
- Solve problems on trees, heaps, and graphs
### Week 6: Advanced Algorithms
Day 36-37: Dynamic Programming
- Introduction to dynamic programming
- Solving common DP problems (e.g., Fibonacci, knapsack)
Day 38-39: Greedy Algorithms
- Understanding greedy strategy
- Solving problems using greedy algorithms
Day 40-41: Graph Algorithms
- Dijkstraโs algorithm for shortest path
- Kruskalโs and Primโs algorithms for minimum spanning tree
Day 42: Practice Day
- Solve problems on dynamic programming, greedy algorithms, and advanced graph algorithms
### Week 7: Problem Solving and Optimization
Day 43-44: Problem-Solving Techniques
- Backtracking, bit manipulation, and combinatorial problems
Day 45-46: Practice Competitive Programming
- Participate in contests on platforms like Codeforces or CodeChef
Day 47-48: Mock Interviews and Coding Challenges
- Simulate technical interviews
- Focus on time management and optimization
Day 49: Review and Revise
- Go through notes and previously solved problems
- Identify weak areas and work on them
### Week 8: Final Stretch and Project
Day 50-52: Build a Project
- Use your knowledge to build a substantial project in Python involving DSA concepts
Day 53-54: Code Review and Testing
- Refactor your project code
- Write tests for your project
Day 55-56: Final Practice
- Solve problems from previous contests or new challenging problems
Day 57-58: Documentation and Presentation
- Document your project and prepare a presentation or a detailed report
Day 59-60: Reflection and Future Plan
- Reflect on what you've learned
- Plan your next steps (advanced topics, more projects, etc.)
Best DSA RESOURCES: https://topmate.io/coding/886874
Credits: https://t.iss.one/free4unow_backup
ENJOY LEARNING ๐๐
โค4
This repository collects everything you need to use AI and LLM in your projects.
120+ libraries, organized by development stages:
โ Model training, fine-tuning, and evaluation
โ Deploying applications with LLM and RAG
โ Fast and scalable model launch
โ Data extraction, crawlers, and scrapers
โ Creating autonomous LLM agents
โ Prompt optimization and security
Repo: https://github.com/KalyanKS-NLP/llm-engineer-toolkit
120+ libraries, organized by development stages:
โ Model training, fine-tuning, and evaluation
โ Deploying applications with LLM and RAG
โ Fast and scalable model launch
โ Data extraction, crawlers, and scrapers
โ Creating autonomous LLM agents
โ Prompt optimization and security
Repo: https://github.com/KalyanKS-NLP/llm-engineer-toolkit
โค6
๐ง๐ผ๐ฝ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ ๐ง๐ผ ๐๐ฒ๐ ๐๐ถ๐ด๐ต ๐ฃ๐ฎ๐๐ถ๐ป๐ด ๐๐ผ๐ฏ ๐๐ป ๐ฎ๐ฌ๐ฎ๐ฒ๐
Opportunities With 500+ Hiring Partners
๐๐๐น๐น๐๐๐ฎ๐ฐ๐ธ:- https://pdlink.in/4hO7rWY
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐:- https://pdlink.in/4fdWxJB
๐ Start learning today, build job-ready skills, and get placed in leading tech companies.
Opportunities With 500+ Hiring Partners
๐๐๐น๐น๐๐๐ฎ๐ฐ๐ธ:- https://pdlink.in/4hO7rWY
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐:- https://pdlink.in/4fdWxJB
๐ Start learning today, build job-ready skills, and get placed in leading tech companies.
โค2
Java vs Python Programming: Quick Comparison โ
๐ Java Programming
โข Strongly typed language
โข Object-oriented
โข Compiled, runs on JVM
Best fields:
โข Backend development
โข Enterprise systems
โข Android development
โข Large-scale applications
Job titles:
โข Java Developer
โข Backend Engineer
โข Software Engineer
โข Android Developer
Hiring reality:
โข Popular in MNCs and legacy systems
โข Used in banking and enterprise apps
India salary range:
โข Fresher: 4โ7 LPA
โข Mid-level: 8โ18 LPA
Real tasks:
โข Build REST APIs
โข Backend services
โข Android apps
โข Large transaction systems
๐ Python Programming
โข Dynamically typed
โข Simple syntax
โข Interpreted language
Best fields:
โข Data Analytics
โข Data Science
โข Machine Learning
โข Automation
โข Backend development
Job titles:
โข Python Developer
โข Data Analyst
โข Data Scientist
โข ML Engineer
Hiring reality:
โข High demand in startups and AI teams
โข Preferred for rapid development
India salary range:
โข Fresher: 6โ10 LPA
โข Mid-level: 12โ25 LPA
Real tasks:
โข Data analysis scripts
โข ML models
โข Automation tools
โข APIs with Django or FastAPI
โ๏ธ Quick comparison
โข Data handling: Java focuses on structured systems, Python handles data and files easily
โข Speed: Java runs faster in production, Python runs slower but builds faster
โข Learning: Java has steep learning curve, Python is beginner-friendly
๐ฏ Role-based choice
โข Backend Developer: Java for scalability, Python for quick APIs
โข Data Analyst: Python preferred, Java rarely used
โข Data Scientist: Python mandatory, Java optional
โข Android Developer: Java required, Python not used
โ Best career move
โข Start with Python for quick entry
โข Add Java for strong backend roles
โข Pick based on your target job
Which one do you prefer?
Java ๐
Python โค๏ธ
Both ๐
None ๐ฎ
๐ Java Programming
โข Strongly typed language
โข Object-oriented
โข Compiled, runs on JVM
Best fields:
โข Backend development
โข Enterprise systems
โข Android development
โข Large-scale applications
Job titles:
โข Java Developer
โข Backend Engineer
โข Software Engineer
โข Android Developer
Hiring reality:
โข Popular in MNCs and legacy systems
โข Used in banking and enterprise apps
India salary range:
โข Fresher: 4โ7 LPA
โข Mid-level: 8โ18 LPA
Real tasks:
โข Build REST APIs
โข Backend services
โข Android apps
โข Large transaction systems
๐ Python Programming
โข Dynamically typed
โข Simple syntax
โข Interpreted language
Best fields:
โข Data Analytics
โข Data Science
โข Machine Learning
โข Automation
โข Backend development
Job titles:
โข Python Developer
โข Data Analyst
โข Data Scientist
โข ML Engineer
Hiring reality:
โข High demand in startups and AI teams
โข Preferred for rapid development
India salary range:
โข Fresher: 6โ10 LPA
โข Mid-level: 12โ25 LPA
Real tasks:
โข Data analysis scripts
โข ML models
โข Automation tools
โข APIs with Django or FastAPI
โ๏ธ Quick comparison
โข Data handling: Java focuses on structured systems, Python handles data and files easily
โข Speed: Java runs faster in production, Python runs slower but builds faster
โข Learning: Java has steep learning curve, Python is beginner-friendly
๐ฏ Role-based choice
โข Backend Developer: Java for scalability, Python for quick APIs
โข Data Analyst: Python preferred, Java rarely used
โข Data Scientist: Python mandatory, Java optional
โข Android Developer: Java required, Python not used
โ Best career move
โข Start with Python for quick entry
โข Add Java for strong backend roles
โข Pick based on your target job
Which one do you prefer?
Java ๐
Python โค๏ธ
Both ๐
None ๐ฎ