Programming Resources | Python | Javascript | Artificial Intelligence Updates | Computer Science Courses | AI Books
56.1K subscribers
876 photos
3 videos
4 files
342 links
Everything about programming for beginners
* Python programming
* Java programming
* App development
* Machine Learning
* Data Science

Managed by: @love_data
Download Telegram
๐Ÿš€ Roadmap to Master C++ in 50 Days! ๐Ÿ’ป๐Ÿง 

๐Ÿ“… Week 1โ€“2: Basics Syntax
๐Ÿ”น Day 1โ€“5: C++ setup, input/output, variables, data types
๐Ÿ”น Day 6โ€“10: Operators, conditionals (if/else), loops (for, while)

๐Ÿ“… Week 3โ€“4: Functions Arrays
๐Ÿ”น Day 11โ€“15: Functions, scope, pass by value/reference
๐Ÿ”น Day 16โ€“20: Arrays, strings, 2D arrays, basic problems

๐Ÿ“… Week 5โ€“6: OOP STL
๐Ÿ”น Day 21โ€“25: Classes, objects, constructors, inheritance
๐Ÿ”น Day 26โ€“30: Polymorphism, encapsulation, abstraction
๐Ÿ”น Day 31โ€“35: Standard Template Library (vector, stack, queue, map)

๐Ÿ“… Week 7โ€“8: Advanced Concepts
๐Ÿ”น Day 36โ€“40: Pointers, dynamic memory, references
๐Ÿ”น Day 41โ€“45: File handling, exception handling

๐ŸŽฏ Final Stretch: DSA Projects
๐Ÿ”น Day 46โ€“48: Sorting, searching, recursion, linked lists
๐Ÿ”น Day 49โ€“50: Mini projects like calculator, student DB, or simple game

๐Ÿ’ฌ Tap โค๏ธ for more!
โค9๐Ÿ‘2
๐—™๐—ฅ๐—˜๐—˜ ๐—ข๐—ป๐—น๐—ถ๐—ป๐—ฒ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ฐ๐—น๐—ฎ๐˜€๐˜€ ๐—•๐˜† ๐—œ๐—ป๐—ฑ๐˜‚๐˜€๐˜๐—ฟ๐˜† ๐—˜๐˜…๐—ฝ๐—ฒ๐—ฟ๐˜๐˜€ ๐Ÿ˜

Roadmap to land your dream job in top product-based companies

๐—›๐—ถ๐—ด๐—ต๐—น๐—ถ๐—ด๐—ต๐˜๐—ฒ๐˜€:-
- 90-Day Placement Plan
- Tech & Non-Tech Career Path
- Interview Preparation Tips
- Live Q&A

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ‘‡:- 

https://pdlink.in/3Ltb3CE

Date & Time:- 06th January 2026 , 7PM
โค1
๐Ÿ”– 40 NumPy methods that cover 95% of tasks

A convenient cheat sheet for those who work with data analysis and ML.

Here are collected the main functions for:
โ–ถ๏ธ Creating and modifying arrays;
โ–ถ๏ธ Mathematical operations;
โ–ถ๏ธ Working with matrices and vectors;
โ–ถ๏ธ Sorting and searching for values.


Save it for yourself โ€” it will come in handy when working with NumPy.
โค4
๐—ง๐—ผ๐—ฝ ๐Ÿฑ ๐—œ๐—ป-๐——๐—ฒ๐—บ๐—ฎ๐—ป๐—ฑ ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€ ๐˜๐—ผ ๐—™๐—ผ๐—ฐ๐˜‚๐˜€ ๐—ผ๐—ป ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฒ๐Ÿ˜

Start learning industry-relevant data skills today at zero cost!

๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€:- https://pdlink.in/497MMLw

๐—”๐—œ & ๐— ๐—Ÿ :- https://pdlink.in/4bhetTu

๐—–๐—น๐—ผ๐˜‚๐—ฑ ๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ถ๐—ป๐—ด:- https://pdlink.in/3LoutZd

๐—–๐˜†๐—ฏ๐—ฒ๐—ฟ ๐—ฆ๐—ฒ๐—ฐ๐˜‚๐—ฟ๐—ถ๐˜๐˜†:- https://pdlink.in/3N9VOyW

๐—ข๐˜๐—ต๐—ฒ๐—ฟ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€:- https://pdlink.in/4qgtrxU

๐ŸŽ“ Enroll Now & Get Certified
โœ… DSA Roadmap: Part 1 โ€“ Time & Space Complexity โฑ๏ธ๐Ÿ“Š

Understanding time and space complexity is crucial for writing efficient code. It helps you estimate how your algorithm will perform as input size grows.

1๏ธโƒฃ What is Time Complexity? 
Time complexity tells us how fast an algorithm runs based on input size (n). It doesn't measure time in seconds โ€” it measures growth rate.

Example (Python):
for i in range(n):
    print(i)

Runs n times โ†’ O(n) time

Example (Java):
for (int i = 0; i < n; i++) {
    System.out.println(i);
}

Example (C++):
for (int i = 0; i < n; i++) {
    cout << i << endl;
}

2๏ธโƒฃ Common Time Complexities (Best to Worst): 
O(1) โ€“ Constant (e.g., array access) 
O(log n) โ€“ Logarithmic (e.g., binary search) 
O(n) โ€“ Linear (e.g., single loop) 
O(n log n) โ€“ Efficient sorting (e.g., merge sort) 
O(nยฒ) โ€“ Quadratic (e.g., nested loops) 
O(2โฟ), O(n!) โ€“ Very slow (e.g., recursive brute force)

3๏ธโƒฃ What is Space Complexity? 
It tells us how much extra memory your code uses depending on input size.

Example:
arr = [0] * n  # O(n) space

If no extra structures are used โ†’ O(1) space

4๏ธโƒฃ Why It Matters 
โ€ข Handles large inputs without crashing 
โ€ข Crucial in coding interviews 
โ€ข Essential for scalable systems

5๏ธโƒฃ Practice Task โ€“ Guess the Complexity

a) Nested loop
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
        System.out.println(i + ", " + j);
    }
}

// O(nยฒ)

b) Binary search
while (low <= high) {
    int mid = (low + high) / 2;
    if (arr[mid] == target) break;
}

// O(log n)

c) Recursive Fibonacci
def fib(n):
    if n <= 1:
        return n
    return fib(n-1) + fib(n-2)

// O(2^n)

Takeaway: 
Always analyze two things before solving any problem: 
โ€“ How many steps will this take? (Time) 
โ€“ How much memory does it use? (Space)

๐Ÿ’ฌ Tap โค๏ธ for more
โค6๐Ÿ‘Œ4
โœ… DSA Part 2 โ€“ Recursion ๐Ÿ”๐Ÿง 

Recursion is when a function calls itself to solve smaller subproblems. It's powerful but needs a base case to avoid infinite loops.

1๏ธโƒฃ What is Recursion?
A recursive function solves a part of the problem and calls itself on the remaining part.

Basic Python Example:
def countdown(n):
if n == 0:
print("Done!")
return
print(n)
countdown(n - 1)

โ–ถ๏ธ Counts down from n to 0

2๏ธโƒฃ Key Parts of Recursion:
โ€ข Base case โ€“ Stops recursion
โ€ข Recursive case โ€“ Function calls itself

Java Example โ€“ Factorial:
int factorial(int n) {
if (n == 0) return 1;
return n * factorial(n - 1);
}

C++ Example โ€“ Sum of Array:
int sum(int arr[], int n) {
if (n == 0) return 0;
return arr[n - 1] + sum(arr, n - 1);
}

3๏ธโƒฃ Why Use Recursion?
โ€ข Breaks complex problems into simpler ones
โ€ข Great for trees, graphs, backtracking, divide conquer

4๏ธโƒฃ When Not to Use It?
โ€ข Large inputs can cause stack overflow
โ€ข Use loops if recursion is too deep or inefficient

5๏ธโƒฃ Practice Task:
โœ… Write a recursive function to calculate power (a^b)
โœ… Write a function to reverse a string recursively
โœ… Try basic Fibonacci using recursion

๐Ÿ‘‡ Solution for Practice Task

โœ… 1. Recursive Power Function (a^b)

Python:
def power(a, b):
if b == 0:
return 1
return a * power(a, b - 1)

print(power(2, 3)) # Output: 8

C++:
int power(int a, int b) {
if (b == 0) return 1;
return a * power(a, b - 1);
}
// Example: cout << power(2, 3); // Output: 8

Java:
int power(int a, int b) {
if (b == 0) return 1;
return a * power(a, b - 1);
}
// Example: System.out.println(power(2, 3)); // Output: 8

โœ… 2. Reverse String Recursively

Python:
def reverse(s):
if len(s) == 0:
return ""
return reverse(s[1:]) + s[0]

print(reverse("hello")) # Output: "olleh"

C++:
string reverse(string s) {
if (s.length() == 0) return "";
return reverse(s.substr(1)) + s[0];
}
// Example: cout << reverse("hello"); // Output: "olleh"

Java:
String reverse(String s) {
if (s.isEmpty()) return "";
return reverse(s.substring(1)) + s.charAt(0);
}
// Example: System.out.println(reverse("hello")); // Output: "olleh"

โœ… 3. Fibonacci Using Recursion

Python:
def fib(n):
if n <= 1:
return n
return fib(n - 1) + fib(n - 2)

print(fib(6)) # Output: 8

C++:
int fib(int n) {
if (n <= 1) return n;
return fib(n - 1) + fib(n - 2);
}
// Example: cout << fib(6); // Output: 8

Java:
int fib(int n) {
if (n <= 1) return n;
return fib(n - 1) + fib(n - 2);
}
// Example: System.out.println(fib(6)); // Output: 8

*Double Tap โ™ฅ๏ธ For More*
โค7๐Ÿ‘1
โœ… DSA Part 3 โ€“ Arrays & Sliding Window ๐Ÿ“Š๐Ÿง 

Arrays are the foundation of data structures. Mastering them unlocks many advanced topics like sorting, searching, and dynamic programming.

1๏ธโƒฃ What is an Array?
An array is a collection of elements stored at contiguous memory locations. All elements are of the same data type.

Python Example:
arr = [10, 20, 30, 40]
print(arr[2]) # Output: 30

C++ Example:
int arr[] = {10, 20, 30, 40};
cout << arr[2]; // Output: 30

Java Example:
int[] arr = {10, 20, 30, 40};
System.out.println(arr[2]); // Output: 30

2๏ธโƒฃ Basic Array Operations:
โ€ข Insert
โ€ข Delete
โ€ข Traverse
โ€ข Search
โ€ข Update

Python โ€“ Traversal:
for i in arr:
print(i)

C++ โ€“ Search:
for (int i = 0; i < n; i++) {
if (arr[i] == key) {
// Found
}
}

Java โ€“ Update:
arr[1] = 99;  // Updates second element

3๏ธโƒฃ Sliding Window Technique ๐ŸชŸ
Used to reduce time complexity in problems involving subarrays or substrings.

โ–ถ๏ธ Fixed-size window:
Find max sum of subarray of size k
โ–ถ๏ธ Variable-size window:
Find longest substring with unique characters

4๏ธโƒฃ Sliding Window โ€“ Max Sum Subarray (Size k)

Python:
def max_sum(arr, k):
window_sum = sum(arr[:k])
max_sum = window_sum
for i in range(k, len(arr)):
window_sum += arr[i] - arr[i - k]
max_sum = max(max_sum, window_sum)
return max_sum

print(max_sum([1, 4, 2, 10, 2, 3], 3)) # Output: 16

5๏ธโƒฃ Practice Tasks:
โœ… Find the second largest element in an array
โœ… Implement sliding window to find max sum subarray
โœ… Try variable-size window: longest substring without repeating characters

๐Ÿ‘‡ Solution for Practice Tasks

โœ… 1. Find the Second Largest Element in an Array

Python:
def second_largest(arr):
first = second = float('-inf')
for num in arr:
if num > first:
second = first
first = num
elif first > num > second:
second = num
return second if second != float('-inf') else None

print(second_largest([10, 20, 4, 45, 99])) # Output: 45

โœ… 2. Max Sum Subarray (Fixed-size Sliding Window)

Python:
def max_sum(arr, k):
window_sum = sum(arr[:k])
max_sum = window_sum
for i in range(k, len(arr)):
window_sum += arr[i] - arr[i - k]
max_sum = max(max_sum, window_sum)
return max_sum

print(max_sum([1, 4, 2, 10, 2, 3, 1, 0, 20], 4)) # Output: 24

โœ… 3. Longest Substring Without Repeating Characters (Variable-size Sliding Window)

Python:
def longest_unique_substring(s):
seen = {}
left = max_len = 0
for right in range(len(s)):
if s[right] in seen and seen[s[right]] >= left:
left = seen[s[right]] + 1
seen[s[right]] = right
max_len = max(max_len, right - left + 1)
return max_len

print(longest_unique_substring("abcabcbb")) # Output: 3 ("abc")

Double Tap โ™ฅ๏ธ For Part-4
โค10
๐—™๐—ฅ๐—˜๐—˜ ๐—ข๐—ป๐—น๐—ถ๐—ป๐—ฒ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ฐ๐—น๐—ฎ๐˜€๐˜€ ๐—ข๐—ป ๐—Ÿ๐—ฎ๐˜๐—ฒ๐˜€๐˜ ๐—ง๐—ฒ๐—ฐ๐—ต๐—ป๐—ผ๐—น๐—ผ๐—ด๐—ถ๐—ฒ๐˜€๐Ÿ˜

- Data Science 
- AI/ML
- Data Analytics
- UI/UX
- Full-stack Development 

Get Job-Ready Guidance in Your Tech Journey

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ‘‡:- 

https://pdlink.in/4sw5Ev8

Date :- 11th January 2026
โค1
โœ… DSA Part 4 โ€“ Strings: Patterns, Hashing & Two Pointers ๐Ÿ”ค๐Ÿงฉโšก

Strings are everywhereโ€”from passwords to DNA sequences. Mastering string manipulation unlocks powerful algorithms in pattern matching, text processing, and optimization.

1๏ธโƒฃ What is a String?
A string is a sequence of characters. In most languages, strings are immutable and indexed like arrays.

Python Example:
s = "hello"
print(s[1]) # Output: 'e'

C++ Example:
string s = "hello";
cout << s[1]; // Output: 'e'

Java Example:
String s = "hello";
System.out.println(s.charAt(1)); // Output: 'e'

2๏ธโƒฃ Common String Operations:
โ€ข Concatenation
โ€ข Substring
โ€ข Comparison
โ€ข Reversal
โ€ข Search
โ€ข Replace

Python โ€“ Reversal:
s = "hello"
print(s[::-1]) # Output: 'olleh'

C++ โ€“ Substring:
string s = "hello";
cout << s.substr(1, 3); // Output: 'ell'

Java โ€“ Replace:
String s = "hello";
System.out.println(s.replace("l", "x")); // Output: 'hexxo'

3๏ธโƒฃ Pattern Matching โ€“ Naive vs Efficient
Naive Approach: Check every substring
Efficient: Use hashing or KMP (Knuth-Morris-Pratt)

Python โ€“ Naive Pattern Search:
def search(text, pattern):
for i in range(len(text) - len(pattern) + 1):
if text[i:i+len(pattern)] == pattern:
print(f"Found at index {i}")

search("abracadabra", "abra") # Output: Found at index 0, 7

4๏ธโƒฃ Hashing for Fast Lookup
Use hash maps to store character counts, frequencies, or indices.

Python โ€“ First Unique Character:
from collections import Counter

def first_unique_char(s):
count = Counter(s)
for i, ch in enumerate(s):
if count[ch] == 1:
return i
return -1

print(first_unique_char("leetcode")) # Output: 0

5๏ธโƒฃ Two Pointers Technique
Used for problems like palindromes, anagrams, or substring windows.

Python โ€“ Valid Palindrome:
def is_palindrome(s):
s = ''.join(filter(str.isalnum, s)).lower()
left, right = 0, len(s) - 1
while left < right:
if s[left] != s[right]:
return False
left += 1
right -= 1
return True

print(is_palindrome("A man, a plan, a canal: Panama")) # Output: True

6๏ธโƒฃ Practice Tasks:
โœ… Implement pattern search (naive)
โœ… Find first non-repeating character
โœ… Check if a string is a palindrome
โœ… Use two pointers to reverse vowels in a string
โœ… Try Rabin-Karp or KMP for pattern matching

๐Ÿ’ฌ Double Tap โค๏ธ for Part-5
โค5
๐—›๐—ถ๐—ด๐—ต ๐——๐—ฒ๐—บ๐—ฎ๐—ป๐—ฑ๐—ถ๐—ป๐—ด ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ช๐—ถ๐˜๐—ต ๐—ฃ๐—น๐—ฎ๐—ฐ๐—ฒ๐—บ๐—ฒ๐—ป๐˜ ๐—”๐˜€๐˜€๐—ถ๐˜€๐˜๐—ฎ๐—ป๐—ฐ๐—ฒ๐Ÿ˜

Learn from IIT faculty and industry experts.

IIT Roorkee DS & AI Program :- https://pdlink.in/4qHVFkI

IIT Patna AI & ML :- https://pdlink.in/4pBNxkV

IIM Mumbai DM & Analytics :- https://pdlink.in/4jvuHdE

IIM Rohtak Product Management:- https://pdlink.in/4aMtk8i

IIT Roorkee Agentic Systems:- https://pdlink.in/4aTKgdc

Upskill in todayโ€™s most in-demand tech domains and boost your career ๐Ÿš€
โค1
โœ… DSA Part 5 โ€“ Linked Lists: Single, Double & Reverse ๐Ÿ”๐Ÿ”—๐Ÿ“š

Linked Lists are dynamic data structures ideal for scenarios requiring frequent insertions and deletions. Unlike arrays, they donโ€™t need contiguous memory and offer flexible memory usage.

1๏ธโƒฃ What is a Linked List?
A Linked List is a linear data structure where each element (node) contains:
- Data
- Pointer to the next node (and optionally the previous node)

Types:
- Singly Linked List: Each node points to the next
- Doubly Linked List: Nodes point to both next and previous
- Circular Linked List: Last node points back to the head

2๏ธโƒฃ Singly Linked List โ€“ Basic Structure

Python
class Node:
    def __init__(self, data):
        self.data = data
        self.next = None


Java
class Node {
    int data;
    Node next;
    Node(int data) {
        this.data = data;
        this.next = null;
    }
}


C++
struct Node {
    int data;
    Node* next;
    Node(int data): data(data), next(nullptr) {}
};


3๏ธโƒฃ Insert at Head (Singly)

Python
def insert_head(head, data):
    new_node = Node(data)
    new_node.next = head
    return new_node


Java
Node insertHead(Node head, int data) {
    Node newNode = new Node(data);
    newNode.next = head;
    return newNode;
}


C++
Node* insertHead(Node* head, int data) {
    Node* newNode = new Node(data);
    newNode->next = head;
    return newNode;
}


4๏ธโƒฃ Doubly Linked List โ€“ Bi-directional Pointers

Python
class DNode:
    def __init__(self, data):
        self.data = data
        self.prev = None
        self.next = None


Java
class DNode {
    int data;
    DNode prev, next;
    DNode(int data) {
        this.data = data;
    }
}


C++
struct DNode {
    int data;
    DNode* prev;
    DNode* next;
    DNode(int data): data(data), prev(nullptr), next(nullptr) {}
};


5๏ธโƒฃ Insert at Head (Doubly)

Python
def insert_head(head, data):
    new_node = DNode(data)
    new_node.next = head
    if head:
        head.prev = new_node
    return new_node


Java
DNode insertHead(DNode head, int data) {
    DNode newNode = new DNode(data);
    newNode.next = head;
    if (head != null) head.prev = newNode;
    return newNode;
}


C++
DNode* insertHead(DNode* head, int data) {
    DNode* newNode = new DNode(data);
    newNode->next = head;
    if (head) head->prev = newNode;
    return newNode;
}


6๏ธโƒฃ Reversing a Singly Linked List

Python
def reverse_list(head):
    prev = None
    current = head
    while current:
        next_node = current.next
        current.next = prev
        prev = current
        current = next_node
    return prev


Java
Node reverseList(Node head) {
    Node prev = null, current = head;
    while (current != null) {
        Node next = current.next;
        current.next = prev;
        prev = current;
        current = next;
    }
    return prev;
}


C++
Node* reverseList(Node* head) {
    Node* prev = nullptr;
    Node* current = head;
    while (current) {
        Node* next = current->next;
        current->next = prev;
        prev = current;
        current = next;
    }
    return prev;
}


7๏ธโƒฃ Why Use Linked Lists?
โœ… Dynamic memory allocation
โœ… Efficient insert/delete (O(1) at head/tail)
โŒ Slower access (O(n) for random access)
โœ… Great for implementing stacks, queues, hash maps, etc.

8๏ธโƒฃ Practice Tasks
โœ… Implement singly linked list with insert/delete
โœ… Implement doubly linked list with insert at tail
โœ… Reverse a singly linked list
โค5
๐Ÿ“Š ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐Ÿ˜

๐Ÿš€Upgrade your skills with industry-relevant Data Analytics training at ZERO cost 

โœ… Beginner-friendly
โœ… Certificate on completion
โœ… High-demand skill in 2026

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:- 

https://pdlink.in/497MMLw

๐Ÿ“Œ 100% FREE โ€“ Limited seats available!
โค1๐Ÿ‘1
Coding interview questions with concise answers for software roles:

1๏ธโƒฃ What happens when you type a URL and hit Enter?
Answer:
- DNS Lookup โ†’ IP address
- Browser sends HTTP/HTTPS request
- Server responds with HTML/CSS/JS
- Browser builds DOM, applies styles (CSSOM), runs JS
- Page is rendered


2๏ธโƒฃ Difference between var, let, and const?
Answer:
- var: function-scoped, hoisted
- let: block-scoped, not hoisted
- const: block-scoped, canโ€™t be reassigned


3๏ธโƒฃ Reverse a String in JavaScript
function reverseString(str) {
return str.split('').reverse().join('');
}

4๏ธโƒฃ Find the max number in an array
const max = Math.max(...arr);

5๏ธโƒฃ Write a function to check if a number is prime
function isPrime(n) {
if (n < 2) return false;
for (let i = 2; i <= Math.sqrt(n); i++) {
if (n % i === 0) return false;
}
return true;
}

6๏ธโƒฃ What is closure in JavaScript?
Answer:
A function that remembers variables from its outer scope even after the outer function has returned.

7๏ธโƒฃ What is event delegation?
Answer:
Attaching a single event listener to a parent element to manage events on its children using event.target.

8๏ธโƒฃ Difference between == and ===
Answer:
- == checks value (with type coercion)
- === checks value + type (strict comparison)

9๏ธโƒฃ What is the Virtual DOM?
Answer:
A lightweight copy of the real DOM used in React. React updates the virtual DOM first and then applies only the changes to the real DOM for efficiency.

๐Ÿ”Ÿ Write code to remove duplicates from an array
const uniqueArr = [...new Set(arr)];

React โค๏ธ for more
โค4
๐—ฃ๐—น๐—ฎ๐—ฐ๐—ฒ๐—บ๐—ฒ๐—ป๐˜ ๐—”๐˜€๐˜€๐—ถ๐˜€๐˜๐—ฎ๐—ป๐—ฐ๐—ฒ ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ ๐—ถ๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—”๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ถ๐—ฎ๐—น ๐—œ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฏ๐˜† ๐—œ๐—œ๐—ง ๐—ฅ๐—ผ๐—ผ๐—ฟ๐—ธ๐—ฒ๐—ฒ๐Ÿ˜

Deadline: 18th January 2026

Eligibility: Open to everyone
Duration: 6 Months
Program Mode: Online
Taught By: IIT Roorkee Professors

Companies majorly hire candidates having Data Science and Artificial Intelligence knowledge these days.

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—Ÿ๐—ถ๐—ป๐—ธ๐Ÿ‘‡

https://pdlink.in/4qHVFkI

Only Limited Seats Available!
โœ… Learn Trending Skills in 2026 ๐Ÿ”ฐ

1. Web Development โž
โ—€๏ธ https://t.iss.one/webdevcoursefree

2. CSS โž
โ—€๏ธ https://css-tricks.com

3. JavaScript โž
โ—€๏ธ https://t.iss.one/javascript_courses

4. React โž
โ—€๏ธ https://react-tutorial.app

5. Tailwind CSS โž
โ—€๏ธ https://scrimba.com

6. Data Science  โž
โ—€๏ธ https://t.iss.one/datasciencefun

7. Python โž
โ—€๏ธ https://pythontutorial.net

8. SQL โž
โ—€๏ธ  https://t.iss.one/sqlanalyst

โ—€๏ธ https://stratascratch.com/?via=free

9. Git and GitHub โž
โ—€๏ธ https://GitFluence.com

10. Blockchain โž
โ—€๏ธ https://t.iss.one/Bitcoin_Crypto_Web

11. Mongo DB โž
โ—€๏ธ https://mongodb.com

12. Node JS โž
โ—€๏ธ https://nodejsera.com

13. English Speaking โž
โ—€๏ธ https://t.iss.one/englishlearnerspro

14. C#โž
โ—€๏ธhttps://learn.microsoft.com/en-us/training/paths/get-started-c-sharp-part-1/

15. Excelโž
โ—€๏ธ https://t.iss.one/excel_analyst

16. Generative AIโž
โ—€๏ธ https://t.iss.one/generativeai_gpt

17. App Development โž
โ—€๏ธ https://t.iss.one/appsuser

18. Power BI โž
โ—€๏ธ https://t.iss.one/powerbi_analyst

19. Tableau โž
โ—€๏ธ https://www.tableau.com/learn/training

20. Machine Learning โž
โ—€๏ธ https://developers.google.com/machine-learning/crash-course

21. Artificial intelligence โž
โ—€๏ธ https://t.iss.one/machinelearning_deeplearning/

22. Data Analytics โž
โ—€๏ธ https://medium.com/@data_analyst

โ—€๏ธ https://www.linkedin.com/company/sql-analysts

23. Java โž
โ—€๏ธ https://t.iss.one/Java_Programming_Notes

โ—€๏ธ https://learn.microsoft.com/shows/java-for-beginners/

24. C/C++ โž

โ—€๏ธ https://docs.microsoft.com/en-us/cpp/c-language/?view=msvc-170&viewFallbackFrom=vs-2019

25. Data Structures โž
โ—€๏ธ https://leetcode.com/study-plan/data-structure/

26. Cybersecurity โž
โ—€๏ธ https://t.iss.one/EthicalHackingToday

27. Linux โž
โ—€๏ธ https://bit.ly/3KhPdf1

โ—€๏ธ https://training.linuxfoundation.org/resources/

28. Typescript โž
โ—€๏ธ https://learn.microsoft.com/training/paths/build-javascript-applications-typescript/

29. Deep Learning โž
โ—€๏ธ https://introtodeeplearning.com

30. Compiler Design โž
โ—€๏ธ https://online.stanford.edu/courses/soe-ycscs1-compilers

31. DSA โž
โ—€๏ธ https://techdevguide.withgoogle.com/paths/data-structures-and-algorithms/

32. Prompt Engineering โž
โ—€๏ธ https://www.promptingguide.ai/

โ—€๏ธ https://t.iss.one/aiindi

Join @free4unow_backup for more free courses

Like for more โค๏ธ

ENJOY LEARNING๐Ÿ‘๐Ÿ‘
โค4
๐๐š๐ฒ ๐€๐Ÿ๐ญ๐ž๐ซ ๐๐ฅ๐š๐œ๐ž๐ฆ๐ž๐ง๐ญ - ๐†๐ž๐ญ ๐๐ฅ๐š๐œ๐ž๐ ๐ˆ๐ง ๐“๐จ๐ฉ ๐Œ๐๐‚'๐ฌ ๐Ÿ˜

Learn Coding From Scratch - Lectures Taught By IIT Alumni

60+ Hiring Drives Every Month

๐‡๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:- 

๐ŸŒŸ Trusted by 7500+ Students
๐Ÿค 500+ Hiring Partners
๐Ÿ’ผ Avg. Rs. 7.4 LPA
๐Ÿš€ 41 LPA Highest Package

Eligibility: BTech / BCA / BSc / MCA / MSc

๐‘๐ž๐ ๐ข๐ฌ๐ญ๐ž๐ซ ๐๐จ๐ฐ๐Ÿ‘‡ :- 

https://pdlink.in/4hO7rWY

Hurry, limited seats available!
โค1
โœ… 10 Key Programming Differences! ๐Ÿ’ป๐Ÿš€

1๏ธโƒฃ Python 2 vs Python 3
โžก๏ธ Python 2: Legacy, no updates
โžก๏ธ Python 3: Modern, better syntax support
๐Ÿ“Œ Always use Python 3 for new projects.

2๏ธโƒฃ Static vs Dynamic Typing
โžก๏ธ Static: Type declared (e.g., Java, C++)
โžก๏ธ Dynamic: Type inferred at runtime (e.g., Python, JavaScript)
๐Ÿ“Œ Static = fewer bugs, Dynamic = faster dev

3๏ธโƒฃ Abstraction vs Encapsulation
โžก๏ธ Abstraction: Hides complexity
โžก๏ธ Encapsulation: Hides data
๐Ÿ“Œ Abstraction = "What", Encapsulation = "How"

4๏ธโƒฃ REST vs SOAP (APIs)
โžก๏ธ REST: Lightweight, uses HTTP
โžก๏ธ SOAP: Protocol, strict rules
๐Ÿ“Œ REST is more common today

5๏ธโƒฃ SQL vs NoSQL
โžก๏ธ SQL: Structured data, tables (e.g., MySQL)
โžก๏ธ NoSQL: Unstructured, scalable (e.g., MongoDB)
๐Ÿ“Œ SQL = Relational, NoSQL = Flexible

6๏ธโƒฃ For Loop vs While Loop
โžก๏ธ For: Known iterations
โžก๏ธ While: Unknown, condition-based
๐Ÿ“Œ Use for when count is known.

7๏ธโƒฃ Function vs Method
โžก๏ธ Function: Independent block
โžก๏ธ Method: Function inside class
๐Ÿ“Œ All methods are functions, not vice versa

8๏ธโƒฃ Frontend vs Backend
โžก๏ธ Frontend: User interface (HTML, CSS, JS)
โžก๏ธ Backend: Server logic, DB (Node.js, Python, etc.)
๐Ÿ“Œ Frontend = what users see

9๏ธโƒฃ Procedural vs OOP
โžก๏ธ Procedural: Functions logic
โžก๏ธ OOP: Objects, classes
๐Ÿ“Œ OOP = more modular reusable

๐Ÿ”Ÿ Null vs Undefined (JavaScript)
โžก๏ธ Null: Assigned empty value
โžก๏ธ Undefined: Variable declared, not assigned
๐Ÿ“Œ typeof null is 'object', quirky but true!

๐Ÿ’ฌ Tap โค๏ธ if you found this helpful!
โค3