Programming Resources | Python | Javascript | Artificial Intelligence Updates | Computer Science Courses | AI Books
56.1K subscribers
874 photos
3 videos
4 files
339 links
Everything about programming for beginners
* Python programming
* Java programming
* App development
* Machine Learning
* Data Science

Managed by: @love_data
Download Telegram
๐Ÿš€ Roadmap to Master C++ in 50 Days! ๐Ÿ’ป๐Ÿง 

๐Ÿ“… Week 1โ€“2: Basics Syntax
๐Ÿ”น Day 1โ€“5: C++ setup, input/output, variables, data types
๐Ÿ”น Day 6โ€“10: Operators, conditionals (if/else), loops (for, while)

๐Ÿ“… Week 3โ€“4: Functions Arrays
๐Ÿ”น Day 11โ€“15: Functions, scope, pass by value/reference
๐Ÿ”น Day 16โ€“20: Arrays, strings, 2D arrays, basic problems

๐Ÿ“… Week 5โ€“6: OOP STL
๐Ÿ”น Day 21โ€“25: Classes, objects, constructors, inheritance
๐Ÿ”น Day 26โ€“30: Polymorphism, encapsulation, abstraction
๐Ÿ”น Day 31โ€“35: Standard Template Library (vector, stack, queue, map)

๐Ÿ“… Week 7โ€“8: Advanced Concepts
๐Ÿ”น Day 36โ€“40: Pointers, dynamic memory, references
๐Ÿ”น Day 41โ€“45: File handling, exception handling

๐ŸŽฏ Final Stretch: DSA Projects
๐Ÿ”น Day 46โ€“48: Sorting, searching, recursion, linked lists
๐Ÿ”น Day 49โ€“50: Mini projects like calculator, student DB, or simple game

๐Ÿ’ฌ Tap โค๏ธ for more!
โค9๐Ÿ‘2
๐—™๐—ฅ๐—˜๐—˜ ๐—ข๐—ป๐—น๐—ถ๐—ป๐—ฒ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ฐ๐—น๐—ฎ๐˜€๐˜€ ๐—•๐˜† ๐—œ๐—ป๐—ฑ๐˜‚๐˜€๐˜๐—ฟ๐˜† ๐—˜๐˜…๐—ฝ๐—ฒ๐—ฟ๐˜๐˜€ ๐Ÿ˜

Roadmap to land your dream job in top product-based companies

๐—›๐—ถ๐—ด๐—ต๐—น๐—ถ๐—ด๐—ต๐˜๐—ฒ๐˜€:-
- 90-Day Placement Plan
- Tech & Non-Tech Career Path
- Interview Preparation Tips
- Live Q&A

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ‘‡:- 

https://pdlink.in/3Ltb3CE

Date & Time:- 06th January 2026 , 7PM
โค1
๐Ÿ”– 40 NumPy methods that cover 95% of tasks

A convenient cheat sheet for those who work with data analysis and ML.

Here are collected the main functions for:
โ–ถ๏ธ Creating and modifying arrays;
โ–ถ๏ธ Mathematical operations;
โ–ถ๏ธ Working with matrices and vectors;
โ–ถ๏ธ Sorting and searching for values.


Save it for yourself โ€” it will come in handy when working with NumPy.
โค3
๐—ง๐—ผ๐—ฝ ๐Ÿฑ ๐—œ๐—ป-๐——๐—ฒ๐—บ๐—ฎ๐—ป๐—ฑ ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€ ๐˜๐—ผ ๐—™๐—ผ๐—ฐ๐˜‚๐˜€ ๐—ผ๐—ป ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฒ๐Ÿ˜

Start learning industry-relevant data skills today at zero cost!

๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€:- https://pdlink.in/497MMLw

๐—”๐—œ & ๐— ๐—Ÿ :- https://pdlink.in/4bhetTu

๐—–๐—น๐—ผ๐˜‚๐—ฑ ๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ถ๐—ป๐—ด:- https://pdlink.in/3LoutZd

๐—–๐˜†๐—ฏ๐—ฒ๐—ฟ ๐—ฆ๐—ฒ๐—ฐ๐˜‚๐—ฟ๐—ถ๐˜๐˜†:- https://pdlink.in/3N9VOyW

๐—ข๐˜๐—ต๐—ฒ๐—ฟ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€:- https://pdlink.in/4qgtrxU

๐ŸŽ“ Enroll Now & Get Certified
โœ… DSA Roadmap: Part 1 โ€“ Time & Space Complexity โฑ๏ธ๐Ÿ“Š

Understanding time and space complexity is crucial for writing efficient code. It helps you estimate how your algorithm will perform as input size grows.

1๏ธโƒฃ What is Time Complexity? 
Time complexity tells us how fast an algorithm runs based on input size (n). It doesn't measure time in seconds โ€” it measures growth rate.

Example (Python):
for i in range(n):
    print(i)

Runs n times โ†’ O(n) time

Example (Java):
for (int i = 0; i < n; i++) {
    System.out.println(i);
}

Example (C++):
for (int i = 0; i < n; i++) {
    cout << i << endl;
}

2๏ธโƒฃ Common Time Complexities (Best to Worst): 
O(1) โ€“ Constant (e.g., array access) 
O(log n) โ€“ Logarithmic (e.g., binary search) 
O(n) โ€“ Linear (e.g., single loop) 
O(n log n) โ€“ Efficient sorting (e.g., merge sort) 
O(nยฒ) โ€“ Quadratic (e.g., nested loops) 
O(2โฟ), O(n!) โ€“ Very slow (e.g., recursive brute force)

3๏ธโƒฃ What is Space Complexity? 
It tells us how much extra memory your code uses depending on input size.

Example:
arr = [0] * n  # O(n) space

If no extra structures are used โ†’ O(1) space

4๏ธโƒฃ Why It Matters 
โ€ข Handles large inputs without crashing 
โ€ข Crucial in coding interviews 
โ€ข Essential for scalable systems

5๏ธโƒฃ Practice Task โ€“ Guess the Complexity

a) Nested loop
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
        System.out.println(i + ", " + j);
    }
}

// O(nยฒ)

b) Binary search
while (low <= high) {
    int mid = (low + high) / 2;
    if (arr[mid] == target) break;
}

// O(log n)

c) Recursive Fibonacci
def fib(n):
    if n <= 1:
        return n
    return fib(n-1) + fib(n-2)

// O(2^n)

Takeaway: 
Always analyze two things before solving any problem: 
โ€“ How many steps will this take? (Time) 
โ€“ How much memory does it use? (Space)

๐Ÿ’ฌ Tap โค๏ธ for more
โค6๐Ÿ‘Œ4
๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—”๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ถ๐—ฎ๐—น ๐—œ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ ๐—ฏ๐˜† ๐—œ๐—œ๐—ง ๐—ฅ๐—ผ๐—ผ๐—ฟ๐—ธ๐—ฒ๐—ฒ๐Ÿ˜

Deadline: 11th January 2026

Eligibility: Open to everyone
Duration: 6 Months
Program Mode: Online
Taught By: IIT Roorkee Professors

Companies majorly hire candidates having Data Science and Artificial Intelligence knowledge these days.

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—Ÿ๐—ถ๐—ป๐—ธ๐Ÿ‘‡

https://pdlink.in/4qNGMO6

Only Limited Seats Available!
โœ… DSA Part 2 โ€“ Recursion ๐Ÿ”๐Ÿง 

Recursion is when a function calls itself to solve smaller subproblems. It's powerful but needs a base case to avoid infinite loops.

1๏ธโƒฃ What is Recursion?
A recursive function solves a part of the problem and calls itself on the remaining part.

Basic Python Example:
def countdown(n):
if n == 0:
print("Done!")
return
print(n)
countdown(n - 1)

โ–ถ๏ธ Counts down from n to 0

2๏ธโƒฃ Key Parts of Recursion:
โ€ข Base case โ€“ Stops recursion
โ€ข Recursive case โ€“ Function calls itself

Java Example โ€“ Factorial:
int factorial(int n) {
if (n == 0) return 1;
return n * factorial(n - 1);
}

C++ Example โ€“ Sum of Array:
int sum(int arr[], int n) {
if (n == 0) return 0;
return arr[n - 1] + sum(arr, n - 1);
}

3๏ธโƒฃ Why Use Recursion?
โ€ข Breaks complex problems into simpler ones
โ€ข Great for trees, graphs, backtracking, divide conquer

4๏ธโƒฃ When Not to Use It?
โ€ข Large inputs can cause stack overflow
โ€ข Use loops if recursion is too deep or inefficient

5๏ธโƒฃ Practice Task:
โœ… Write a recursive function to calculate power (a^b)
โœ… Write a function to reverse a string recursively
โœ… Try basic Fibonacci using recursion

๐Ÿ‘‡ Solution for Practice Task

โœ… 1. Recursive Power Function (a^b)

Python:
def power(a, b):
if b == 0:
return 1
return a * power(a, b - 1)

print(power(2, 3)) # Output: 8

C++:
int power(int a, int b) {
if (b == 0) return 1;
return a * power(a, b - 1);
}
// Example: cout << power(2, 3); // Output: 8

Java:
int power(int a, int b) {
if (b == 0) return 1;
return a * power(a, b - 1);
}
// Example: System.out.println(power(2, 3)); // Output: 8

โœ… 2. Reverse String Recursively

Python:
def reverse(s):
if len(s) == 0:
return ""
return reverse(s[1:]) + s[0]

print(reverse("hello")) # Output: "olleh"

C++:
string reverse(string s) {
if (s.length() == 0) return "";
return reverse(s.substr(1)) + s[0];
}
// Example: cout << reverse("hello"); // Output: "olleh"

Java:
String reverse(String s) {
if (s.isEmpty()) return "";
return reverse(s.substring(1)) + s.charAt(0);
}
// Example: System.out.println(reverse("hello")); // Output: "olleh"

โœ… 3. Fibonacci Using Recursion

Python:
def fib(n):
if n <= 1:
return n
return fib(n - 1) + fib(n - 2)

print(fib(6)) # Output: 8

C++:
int fib(int n) {
if (n <= 1) return n;
return fib(n - 1) + fib(n - 2);
}
// Example: cout << fib(6); // Output: 8

Java:
int fib(int n) {
if (n <= 1) return n;
return fib(n - 1) + fib(n - 2);
}
// Example: System.out.println(fib(6)); // Output: 8

*Double Tap โ™ฅ๏ธ For More*
โค6๐Ÿ‘1
โœ… DSA Part 3 โ€“ Arrays & Sliding Window ๐Ÿ“Š๐Ÿง 

Arrays are the foundation of data structures. Mastering them unlocks many advanced topics like sorting, searching, and dynamic programming.

1๏ธโƒฃ What is an Array?
An array is a collection of elements stored at contiguous memory locations. All elements are of the same data type.

Python Example:
arr = [10, 20, 30, 40]
print(arr[2]) # Output: 30

C++ Example:
int arr[] = {10, 20, 30, 40};
cout << arr[2]; // Output: 30

Java Example:
int[] arr = {10, 20, 30, 40};
System.out.println(arr[2]); // Output: 30

2๏ธโƒฃ Basic Array Operations:
โ€ข Insert
โ€ข Delete
โ€ข Traverse
โ€ข Search
โ€ข Update

Python โ€“ Traversal:
for i in arr:
print(i)

C++ โ€“ Search:
for (int i = 0; i < n; i++) {
if (arr[i] == key) {
// Found
}
}

Java โ€“ Update:
arr[1] = 99;  // Updates second element

3๏ธโƒฃ Sliding Window Technique ๐ŸชŸ
Used to reduce time complexity in problems involving subarrays or substrings.

โ–ถ๏ธ Fixed-size window:
Find max sum of subarray of size k
โ–ถ๏ธ Variable-size window:
Find longest substring with unique characters

4๏ธโƒฃ Sliding Window โ€“ Max Sum Subarray (Size k)

Python:
def max_sum(arr, k):
window_sum = sum(arr[:k])
max_sum = window_sum
for i in range(k, len(arr)):
window_sum += arr[i] - arr[i - k]
max_sum = max(max_sum, window_sum)
return max_sum

print(max_sum([1, 4, 2, 10, 2, 3], 3)) # Output: 16

5๏ธโƒฃ Practice Tasks:
โœ… Find the second largest element in an array
โœ… Implement sliding window to find max sum subarray
โœ… Try variable-size window: longest substring without repeating characters

๐Ÿ‘‡ Solution for Practice Tasks

โœ… 1. Find the Second Largest Element in an Array

Python:
def second_largest(arr):
first = second = float('-inf')
for num in arr:
if num > first:
second = first
first = num
elif first > num > second:
second = num
return second if second != float('-inf') else None

print(second_largest([10, 20, 4, 45, 99])) # Output: 45

โœ… 2. Max Sum Subarray (Fixed-size Sliding Window)

Python:
def max_sum(arr, k):
window_sum = sum(arr[:k])
max_sum = window_sum
for i in range(k, len(arr)):
window_sum += arr[i] - arr[i - k]
max_sum = max(max_sum, window_sum)
return max_sum

print(max_sum([1, 4, 2, 10, 2, 3, 1, 0, 20], 4)) # Output: 24

โœ… 3. Longest Substring Without Repeating Characters (Variable-size Sliding Window)

Python:
def longest_unique_substring(s):
seen = {}
left = max_len = 0
for right in range(len(s)):
if s[right] in seen and seen[s[right]] >= left:
left = seen[s[right]] + 1
seen[s[right]] = right
max_len = max(max_len, right - left + 1)
return max_len

print(longest_unique_substring("abcabcbb")) # Output: 3 ("abc")

Double Tap โ™ฅ๏ธ For Part-4
โค8
๐—™๐—ฅ๐—˜๐—˜ ๐—ข๐—ป๐—น๐—ถ๐—ป๐—ฒ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ฐ๐—น๐—ฎ๐˜€๐˜€ ๐—ข๐—ป ๐—Ÿ๐—ฎ๐˜๐—ฒ๐˜€๐˜ ๐—ง๐—ฒ๐—ฐ๐—ต๐—ป๐—ผ๐—น๐—ผ๐—ด๐—ถ๐—ฒ๐˜€๐Ÿ˜

- Data Science 
- AI/ML
- Data Analytics
- UI/UX
- Full-stack Development 

Get Job-Ready Guidance in Your Tech Journey

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ‘‡:- 

https://pdlink.in/4sw5Ev8

Date :- 11th January 2026
โœ… DSA Part 4 โ€“ Strings: Patterns, Hashing & Two Pointers ๐Ÿ”ค๐Ÿงฉโšก

Strings are everywhereโ€”from passwords to DNA sequences. Mastering string manipulation unlocks powerful algorithms in pattern matching, text processing, and optimization.

1๏ธโƒฃ What is a String?
A string is a sequence of characters. In most languages, strings are immutable and indexed like arrays.

Python Example:
s = "hello"
print(s[1]) # Output: 'e'

C++ Example:
string s = "hello";
cout << s[1]; // Output: 'e'

Java Example:
String s = "hello";
System.out.println(s.charAt(1)); // Output: 'e'

2๏ธโƒฃ Common String Operations:
โ€ข Concatenation
โ€ข Substring
โ€ข Comparison
โ€ข Reversal
โ€ข Search
โ€ข Replace

Python โ€“ Reversal:
s = "hello"
print(s[::-1]) # Output: 'olleh'

C++ โ€“ Substring:
string s = "hello";
cout << s.substr(1, 3); // Output: 'ell'

Java โ€“ Replace:
String s = "hello";
System.out.println(s.replace("l", "x")); // Output: 'hexxo'

3๏ธโƒฃ Pattern Matching โ€“ Naive vs Efficient
Naive Approach: Check every substring
Efficient: Use hashing or KMP (Knuth-Morris-Pratt)

Python โ€“ Naive Pattern Search:
def search(text, pattern):
for i in range(len(text) - len(pattern) + 1):
if text[i:i+len(pattern)] == pattern:
print(f"Found at index {i}")

search("abracadabra", "abra") # Output: Found at index 0, 7

4๏ธโƒฃ Hashing for Fast Lookup
Use hash maps to store character counts, frequencies, or indices.

Python โ€“ First Unique Character:
from collections import Counter

def first_unique_char(s):
count = Counter(s)
for i, ch in enumerate(s):
if count[ch] == 1:
return i
return -1

print(first_unique_char("leetcode")) # Output: 0

5๏ธโƒฃ Two Pointers Technique
Used for problems like palindromes, anagrams, or substring windows.

Python โ€“ Valid Palindrome:
def is_palindrome(s):
s = ''.join(filter(str.isalnum, s)).lower()
left, right = 0, len(s) - 1
while left < right:
if s[left] != s[right]:
return False
left += 1
right -= 1
return True

print(is_palindrome("A man, a plan, a canal: Panama")) # Output: True

6๏ธโƒฃ Practice Tasks:
โœ… Implement pattern search (naive)
โœ… Find first non-repeating character
โœ… Check if a string is a palindrome
โœ… Use two pointers to reverse vowels in a string
โœ… Try Rabin-Karp or KMP for pattern matching

๐Ÿ’ฌ Double Tap โค๏ธ for Part-5
โค5
๐—›๐—ถ๐—ด๐—ต ๐——๐—ฒ๐—บ๐—ฎ๐—ป๐—ฑ๐—ถ๐—ป๐—ด ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ช๐—ถ๐˜๐—ต ๐—ฃ๐—น๐—ฎ๐—ฐ๐—ฒ๐—บ๐—ฒ๐—ป๐˜ ๐—”๐˜€๐˜€๐—ถ๐˜€๐˜๐—ฎ๐—ป๐—ฐ๐—ฒ๐Ÿ˜

Learn from IIT faculty and industry experts.

IIT Roorkee DS & AI Program :- https://pdlink.in/4qHVFkI

IIT Patna AI & ML :- https://pdlink.in/4pBNxkV

IIM Mumbai DM & Analytics :- https://pdlink.in/4jvuHdE

IIM Rohtak Product Management:- https://pdlink.in/4aMtk8i

IIT Roorkee Agentic Systems:- https://pdlink.in/4aTKgdc

Upskill in todayโ€™s most in-demand tech domains and boost your career ๐Ÿš€
โค1
โœ… DSA Part 5 โ€“ Linked Lists: Single, Double & Reverse ๐Ÿ”๐Ÿ”—๐Ÿ“š

Linked Lists are dynamic data structures ideal for scenarios requiring frequent insertions and deletions. Unlike arrays, they donโ€™t need contiguous memory and offer flexible memory usage.

1๏ธโƒฃ What is a Linked List?
A Linked List is a linear data structure where each element (node) contains:
- Data
- Pointer to the next node (and optionally the previous node)

Types:
- Singly Linked List: Each node points to the next
- Doubly Linked List: Nodes point to both next and previous
- Circular Linked List: Last node points back to the head

2๏ธโƒฃ Singly Linked List โ€“ Basic Structure

Python
class Node:
    def __init__(self, data):
        self.data = data
        self.next = None


Java
class Node {
    int data;
    Node next;
    Node(int data) {
        this.data = data;
        this.next = null;
    }
}


C++
struct Node {
    int data;
    Node* next;
    Node(int data): data(data), next(nullptr) {}
};


3๏ธโƒฃ Insert at Head (Singly)

Python
def insert_head(head, data):
    new_node = Node(data)
    new_node.next = head
    return new_node


Java
Node insertHead(Node head, int data) {
    Node newNode = new Node(data);
    newNode.next = head;
    return newNode;
}


C++
Node* insertHead(Node* head, int data) {
    Node* newNode = new Node(data);
    newNode->next = head;
    return newNode;
}


4๏ธโƒฃ Doubly Linked List โ€“ Bi-directional Pointers

Python
class DNode:
    def __init__(self, data):
        self.data = data
        self.prev = None
        self.next = None


Java
class DNode {
    int data;
    DNode prev, next;
    DNode(int data) {
        this.data = data;
    }
}


C++
struct DNode {
    int data;
    DNode* prev;
    DNode* next;
    DNode(int data): data(data), prev(nullptr), next(nullptr) {}
};


5๏ธโƒฃ Insert at Head (Doubly)

Python
def insert_head(head, data):
    new_node = DNode(data)
    new_node.next = head
    if head:
        head.prev = new_node
    return new_node


Java
DNode insertHead(DNode head, int data) {
    DNode newNode = new DNode(data);
    newNode.next = head;
    if (head != null) head.prev = newNode;
    return newNode;
}


C++
DNode* insertHead(DNode* head, int data) {
    DNode* newNode = new DNode(data);
    newNode->next = head;
    if (head) head->prev = newNode;
    return newNode;
}


6๏ธโƒฃ Reversing a Singly Linked List

Python
def reverse_list(head):
    prev = None
    current = head
    while current:
        next_node = current.next
        current.next = prev
        prev = current
        current = next_node
    return prev


Java
Node reverseList(Node head) {
    Node prev = null, current = head;
    while (current != null) {
        Node next = current.next;
        current.next = prev;
        prev = current;
        current = next;
    }
    return prev;
}


C++
Node* reverseList(Node* head) {
    Node* prev = nullptr;
    Node* current = head;
    while (current) {
        Node* next = current->next;
        current->next = prev;
        prev = current;
        current = next;
    }
    return prev;
}


7๏ธโƒฃ Why Use Linked Lists?
โœ… Dynamic memory allocation
โœ… Efficient insert/delete (O(1) at head/tail)
โŒ Slower access (O(n) for random access)
โœ… Great for implementing stacks, queues, hash maps, etc.

8๏ธโƒฃ Practice Tasks
โœ… Implement singly linked list with insert/delete
โœ… Implement doubly linked list with insert at tail
โœ… Reverse a singly linked list
โค2